Is salinity stratification impairing the performance and volume of stormwater management ponds?

STEP Webinar Series – November 3, 2022

Brian Ginn PhD CLM, Limnologist David Lembcke, Manager Science & Monitoring Chandler Eves, Environ. Monitoring Technician

Member of Conservation Ontario

Urban land cover

- Close to Toronto (~ 6 million)
- Watershed: 450,000
 - + 50,000 seasonal
 - + 50% by 2041
- Rapid growth coincides with enhanced public transit (rail)
- 2020: pandemic "invasion"

Impervious surfaces: $3.4 \rightarrow 4.7\%$ (2003-2018)

Move toward higher density urbanization

Impervious cover type

LSRCA

Winter salt

- Salt is overused (100,000 tonnes, 2012)
- "Better safe than sorry"
 - Fear of lawsuits

Chloride trends

Chloride guidelines: Chronic: 120 mg/L; Acute: 640 mg/L

Stormwater management ponds

- Stormwater management ponds (or detention ponds / basins):
 - Contain surface run-off, flood prevention, passive water quality treatment
- Originally: stop flooding (dry ponds) but...
 - solid particles settle out (designs changed to enhance this); 80% retention
 - Solid particles contain phosphorus \rightarrow nutrient reduction strategy (~40-50 %)
 - shift to permanently wet ponds
- Increased complexity from simple "basin" → two basins, berm, wetland features, bottom draws to "protect coldwater fish habitat"

But ponds have problems...

- built shallow to prevent stratification (it happens anyway)
- often not much of a temperature difference (top vs bottom)
- some ponds go anoxic (are bottom draws protecting anything?)
- anoxia --> sediment P release
- Salt compounds these problems!

Salt run-off: 85,000 mg Cl⁻/L \rightarrow

(Seawater: 19,500 mg Cl⁻/L) (Guidelines: 120 / 640 mg Cl⁻/L)

Stormwater management ponds

- Surveyed 92 ponds in 2010
- 34 ponds sampled for chemistry
- Sp. Cond & salt = 59.3 % of variation
- Nutrients = 13.9% (axis 2)
- 11 pond subset for on-going study
- 3 ponds for continuous monitoring:
 - Residential
 - Small commercial
 - Large commercial

Site C Pond

- Commercial catchment
- Built 2008
- Max. depth: 2.4 m
- Vol: 8069 m³
- Sp. Cond: 59,130 µS/cm
- TP ~42 μg/L

CTD, DO loggers deployed Apr – Nov 2015-2018

Top / bottom; fore- aft bays

Temperature trends

- Temperature difference between top and bottom layers seems related to mixing and air temps.
 - Bottom water can exceed 19°C threshold for coldwater habitat (2016, 2017)
 - Variations due to diurnal flux and incoming precipitation events

Specific conductance

- Bottom layer chloride = 40,000-65,000 mg/L
 - Guidelines: 120 / 640 mg/L; seawater = 19,500 mg/L
- Forebay typically mixes ~ June-July due to rain event with intensity exceeding 5 mm in 10 min
- Aftbay: more resistant; mixes with total volume of precipitation (often stays above guideline year-round)

How / when do ponds mix?

- Used Schmidt Stability Model:
 - Lakes: amount of wind energy needed to mix water column at water temp.
 - Model based on water density from temperature
 - Replaced with salt density and inputs of precipitation

Modified stability model

- Forebay mixes due to rain event intensity exceeding 5 mm in 10 min (~June-July)
- Aftbay: more resistant / intensity dampened; mixes with total volume from inputs

Storm "skipping"

- Large density difference between top and bottom layers resist water column mixing
- Until forebay mixes (5 mm / 10 min) sub-threshold events "skip" across density boundary into aftbay (and receiving waters)
- Impairs pond functioning: reduced "design volume" / performance
 - Typically: sediment accumulation decreases volume then clean out
 - Here: salt stratification limits volume to water column above density layer
 - ~25% of forebay, ~30% of aftbay volumes

Intensity mixes forebay Volume mixes aftbay

April 25 – May 15, 2017:

- Sub-threshold intensity events did not mix forebay
- Volume of rain (>20 mm per day) was sufficient to decrease density in aftbay

Implications of Persistent Stratification: Volume Reduction

- Active volume reduction by 70-75%
- Can last for up to 8 months! November to June
- Aftbay more resistant to mixing
- Less TSS treatment (?)

Implications of Persistent Stratification: Low Dissolved Oxygen

18

Site C aftbay: 2018 Stability vs bottom DO

Implications of Persistent Stratification: Low DO=Phosphorus Release

Implications of Persistent Stratification: Purple-sulphur bacteria

Implications of Persistent Stratification: Odour and Aesthetic complaints

- Aeration / mixing:
 - Bubblers or windmills to circulate water column
 - Need bottom circulation
 - Prevent anoxia and P release
 - De-stratify pond but... resuspend particles
 - (whole reason we built the ponds in the first place!)
 - And some ponds release P under oxygenated conditions anyway

- Enhance Wind exposure
 - Ponds at low elevation and sheltered
 - Strategic tree / vegetation cutting? (phragmities)
 - Enhance wind fetch in design

Lake Simcoe Region Conservation Authority

- "harvest" phosphorus
 - Harvest aquatic plants / reeds and rushes?
 - Uptake P, then remove and compost in fall?
 - Would become annual requirement moving forward
- Chemical treatment of Sediment
 - P binders: alum, Phoslock, iron
 - Expensive and likely require repeated dosing

- Time to maintain the pond / remove sediments
- Sources of salt and better salt application practices
- Consider future changes to catchment hydrology (LID retrofits)

More details:

Technical report in the STEP resource library:

