

Under Our Feet and on the Horizon: A two-decade review of erosion hazard assessment in Ontario

Roger Phillips, Ph.D., P.Geo.

Thursday, October 21st, 2021

Outline

Background

- Which guidelines?
- Why PGO?
- Why now?

Under Our Feet

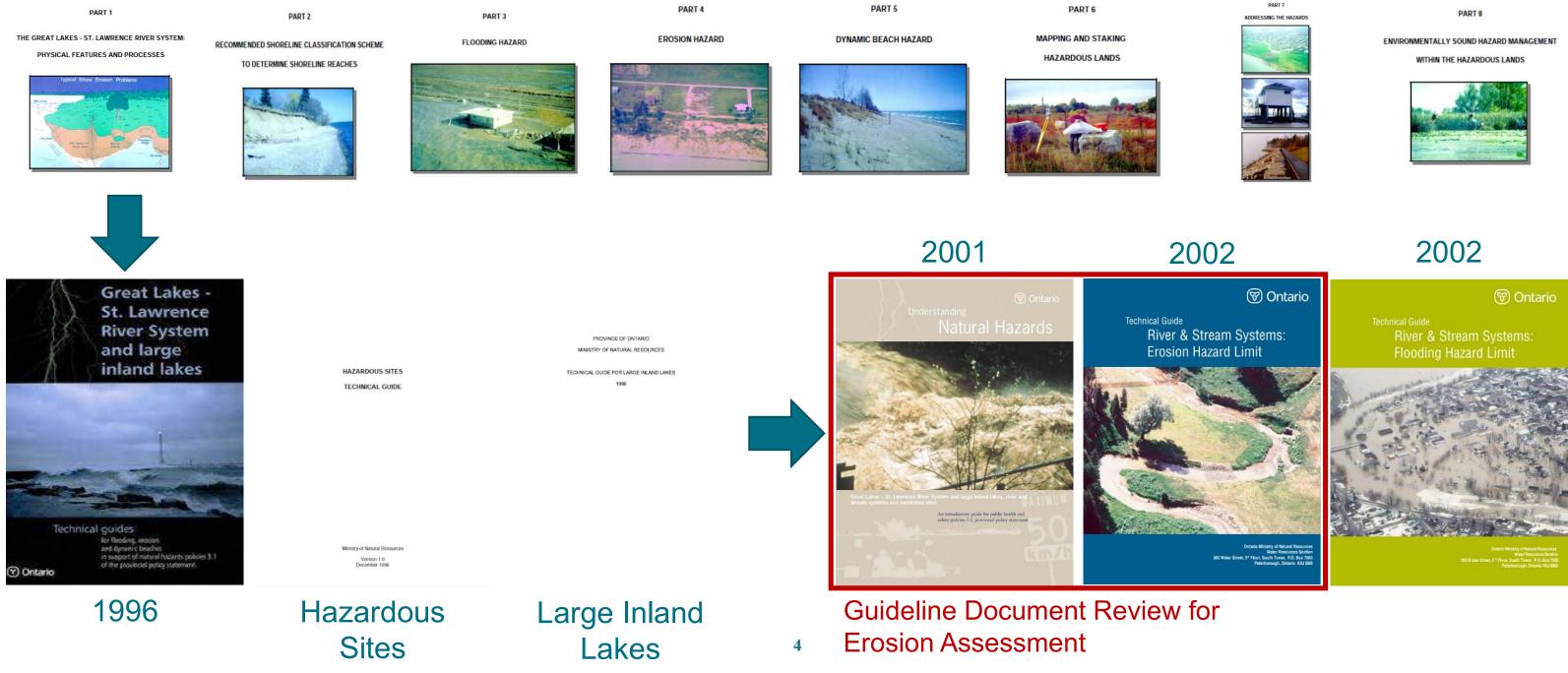
- Guideline Document Reviews
- Select Definitions and Topics for Discussion

On the Horizon

• Recommendations and Next Steps

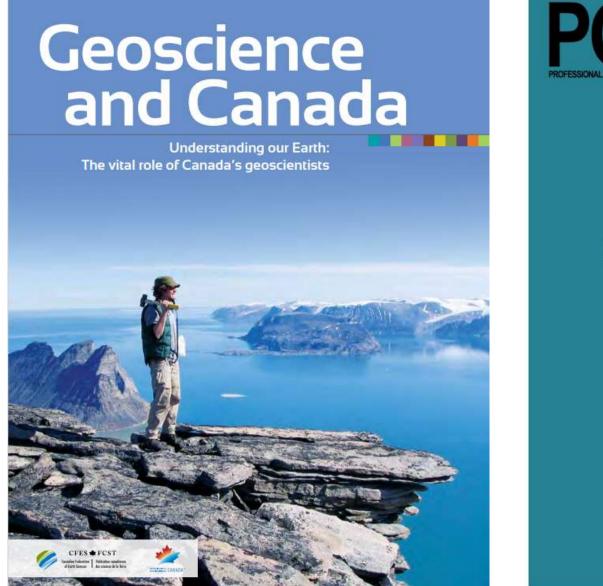
Background

Published guidelines prepared by the Ontario Ministry of Natural Resources to assist the public and planning authorities, such as municipalities and conservation authorities, with an explanation of the Natural Hazards **Policies** (3.1) of the Provincial Policy Statement (PPS) of the 1990 Planning Act.


- References to natural hazards, flooding, and erosion referenced throughout the PPS
- 1996/1997 PPS updated in 2005, 2014, 2020
- Also referenced in 2002 Adaptive Management of Stream Corridors in Ontario publication

Which Guidelines?

1996 TECHNICAL GUIDE FOR GREAT LAKES – ST. LAWRENCE RIVER SHORELINES

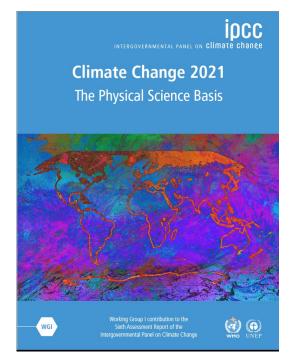


Why Professional Geoscientists Ontario, PGO?

Mandated through the Professional Geoscientists Act, 2000 (PGA) to serve and protect the public and natural environment by regulating the practice of professional geoscience in Ontario.

- Role of geoscientists in "geohazards"
- PGO is recognized stakeholder
- PGO registrants include many of experts in the field
- Professional Practice Guidelines for Geomorphologists relevant to geohazards and erosion hazard assessment

Geohazards, Engineering, and Infrastructure https://geoscientistscanada.ca/publications.php


Professional Practice Guidelines for Geomorphologists

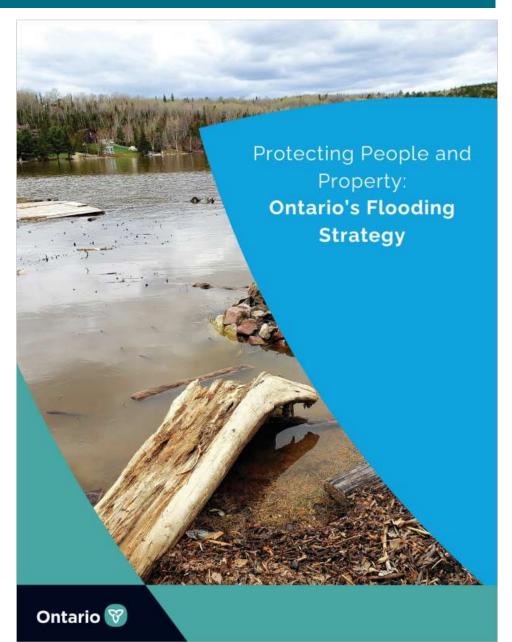
Version 1.5 March 2021 This guideline was developed by the PGO's

Geomorphology Subcommittee https://www.pgo.ca/about/professional-practice

Why Now?

- Existing guidelines have been in services for two decades
- Science, practice, and regulatory landscape have evolved
- Climate change has renewed public focus on flooding and erosion hazards

Sixth Assessment Report (ipcc.ch)


Ontario's Special Advisor on Flooding Report to Government

An Independent Review of the 2019 Flood Events in Ontario

A Report to the Hon. John Yakabuski, Minister of Natural Resources and Forestry

Douglas McNeil, P.Eng. McNeil Consulting Inc. – Winnipeg, Manitoba

An Independent Review of the 2019 Flood Events in Ontario

6

Ontario 2020 Flooding Strategy


Why Now?

Better leverage scientific and technological advancements since 1990s

- Geographic information systems (GIS), remote sensing and LiDAR
- Advanced computing, Fig. So: Streams (J: 100k PNW Reach Hes) courtaid on Fig 4h: The Mt. House region classified unto 10 landform classes atth USOS Level 5 Hydrologic Unit houndarie 3D modelling, visualizations, geostatistics Fig. 5b; Topography of the Westers IMAP Fig. 5c: Watershad Metrics for tp0000, Fig. 52: Wasarshed Matrice for tpi303. Oregon Pilot Area, with 5th level restarsheds Designation of a second distance of **Opintile** dissification ନ 0 20 _ CO Advanced GIS Applications (e.g., Weiss, 2001) **Geohazard Journals** http://www.jennessent.com/downloads/tpi-poster-tnc 18x22.pdf

7

LiDAR Digital Elevation Models https://www.nrcan.gc.ca/

Guideline Document Reviews

Erosion Hazard Assessment

Understanding Natural Hazards (2001)

- Great Lakes St Lawrence River System and Large Inland Lakes
- River and Stream Systems
- Hazardous Sites

Technical Guide River & Streams Systems: Erosion Hazard Limit (2002)

- Erosion Processes
- Application of Provincial Policy
- Site Investigations and Studies

Updates Recommended to Address:

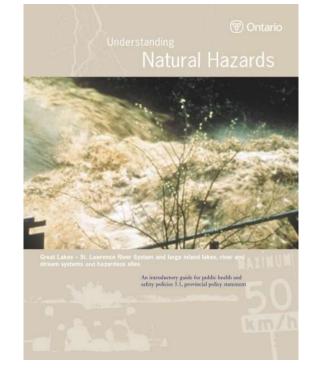
- 1. Specific Technical Issues
- 2. General Scientific Advancement
- 3. Guiding Principles for Policy Application

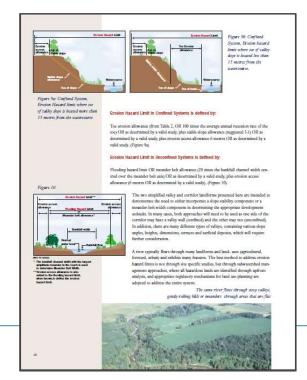
Great Lakes – St. Lawrence River System and large inland lakes, river and stream systems and hazardous sites.

An introductory guide for public health and safety policies 3.1, provincial policy statement

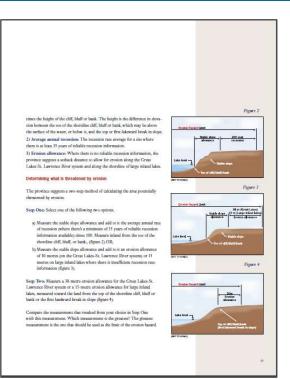
2001

🕅 Ontario

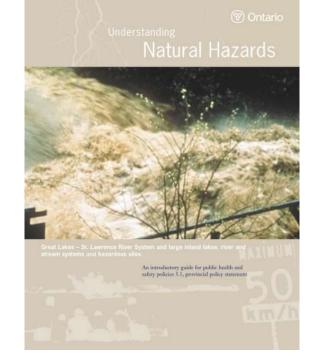

Technical Guide River & Stream Systems: Erosion Hazard Limit

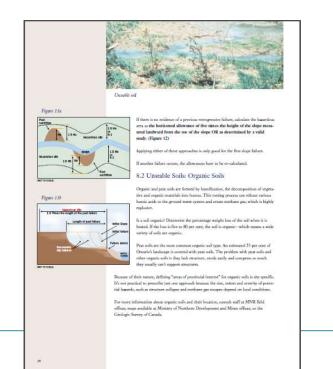


Ontario Ministry of Natural Resources Water Resources Section 300 Water Street, 5th Floor, South Tower, P.O. Box 7000 Peterborough, Ontario K9J 8M5

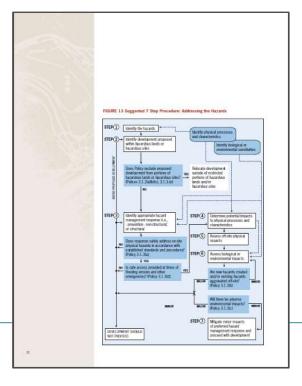

Understanding Natural Hazards (2001)

Section Title	Select Issues
1.0 Purpose of Publication	General update for current policy and science
2.0 What are Natural Hazards?	Benefits of floodplains in watershed management
3.0 Natural Hazards in Ontario	Climate change risks
4.0 Provincial Perspective	Life-cycle cost analyses of mitigation
5.0 Natural Hazard Policies, Section 3.1 of the PPSs	Define engineering, geotechnical, and scientific principles
6.0 Great Lakes – St Lawrence River System and Large Inland Lakes	 Update data, science and technology to provide clear evidence-based criteria for hazard setbacks Increase emphasis on climate change risk Major technical topics to address include: Dynamic beaches Seiche events
7.0 River and Stream Systems	 Update data, science and technology to provide clear evidence-based criteria for hazard setbacks Increase emphasis on climate change risk Major technical topics to address include: Definition of confined systems Meander belt concept Generic erosion hazard setbacks





Understanding Natural Hazards (2001)


Section Title	Select Issues
8.0 Hazardous Sites	Unstable soils and bedrock, karst sinkhole hazards
9.0 Addressing the Hazards	Update with guiding principles
10.0 Ecosystem Based Planning and Management	Context of updated PPC, role of conservation authorities, and future adaptations to regulatory landscape
11.0 Adaptation	Update climate change risks
12.0 Implementation	Role of conservation authorities; Qualified Persons
13.0 Summary Statement	General update for current policy and science

10

Presented dimane change imperation, englical distribupatalente gravette nadi serbane expansion approaches no essare chan searente approaches and comportanting estimation and essare and comportanting estimation in Moving weatered the or essarent distante seare pre-tamonations and distante seare pre-tamonation and distante seare pre-tamonation and distante seare pre-tamonation distantes pagnituris finante essared distantes essare seare distantes essare distantes essare distantes and pre-tamonation and distantes essare pre-tamonation and distantes essare distantes essared distantes essar

11.0

Adaptation

It is afe to conclude that there is a general perception amongst the public that severe weather events and the occurrence of more frequent, intense rainstorm activity is increasing. The state of the advance concerning the potential impacts to Ontario's hydrological argin is evelying, howevement information and relationse conclusion institution and accurrence and accurrent of electron context.

Cruthly, Out-time, have caperisoned extreme worker events in the past, such as the Hurrissen Elast Soure. This invest was the (argen 2-bar minimum event extraol line) 0 starts in until 0954. This starts was contrado such that Hubber Store in Kinness are all affected a 30000 square Elästenter area, dumping over 2800 mm of rain in a 2 day period, resulting in the Low of 81 lines and lowerElästeness or property and findematures. Statistically, it is utility of a start of 81 lines and lowerElästeness or the result of the start of the

Many communities in Oranio with flood risk have been mapped and despatial at flood risk areas. While these may and despatiations provide useful host to avaid an attracting distribution despitising desistance, thenge are by no means static and rables over the long term. Instansing utures a despitise distribution of the second static static and rables over the long term. The statistical term of the second statistical statistical statistics and statistic statistics and statistic and reach its a dampt to the hydrologic of the system. Flood risk maps therefore, will need to be updated to assound from the changes.

Impacts to Ontariols Grant Lakes shorelines, waterholden and river and arteran systems from patiential dimate change scenarios are not explicitly considered within the Provincial Policy Statement and the application of the Nanzal Hazarda Policies. However, dimate change does defense potential dranges in precipitons and long term adaptation strategies will be received address advential langes in precipitons and dicharge patterns.

Carrett prelication indicate that, in general, 'Ottario's total mean annual precipitations will meet Manage, last precipitations patterns will include a intercardo coarrettor of high intensity rainful extension fails and by longer periods of day worther (Environment Canada, 1998), Stremm systems may be afficient by the intercard operative. Brows have an associated with high intensity rainful events and can interacte the potential for localized flooding, aream have resolved and dayee fullence. Alteritifying and presents during a strength means of the strength means of real-based means of real-based present. Brows yoursens and coard aream from infringments' not only a means of real-based prime grant and present patients in may community datapation means, disting for well almost flooring grant to a grant grant patient patient for the grant patient patient patient patient patients and the strength patients and the strength patient patient patient patient patients and the strength patient patient patients and the strength patient patient patient patient patient patients and the stre

12.0

Implementation

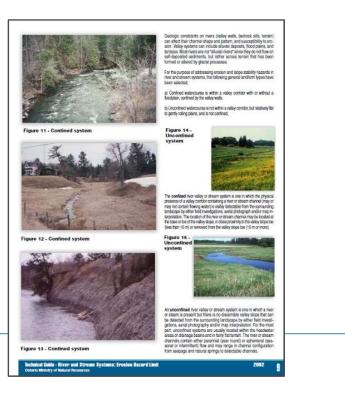
Becent planning reforms have streamlined the planning system into a "ann-window" pracess. Municipal planning decisions are guided by the policy direction in the PPS, as opposed to comment and input received from each Ministry.

Implementation of the Provinced Dollary Statement is advanced through the Makinyy of Manipul Millin, "Dev Wahning Hunging State". Conservation resolution is advect they each have been delegated sole consensating responsibility for the National Tatasaba Polisies. Department, The Millinger Olivard Tatasamo similarity for the National Tatasaba Polisies. Department, The Millinger Olivard Tatasamo similarity for the National Tatasaba Polisies. Department, The Millinger Olivard Tatasamo similarity of the State State State State and care intera work permit, approximate the Kontino of the work as well in the plane and specifications. If provident similarity that the FRIL Construction and Altrensian to Warrangy Regulations under the Construction clusterium in the Altrensian to Warrangy Regulation under the Construction clusterium in the State State State State State and Altrensian to Warrang Kangahan and Partmentane to Warrangy Regulations and the the Construction clusterium in the State Sta

Where information does not take concerning location of defined haurdows lands, planning authorities are advised in underwise studies in identify potential risks from named haurdos. Such studies are normally undervalent by accredited engineers in the consulting community, in accordance with pulsane previsided in the usis of natural haurds technical pulses.

In smary new of Otarias, periodally altere there are concernition and/ordires, there is sing biosymp et archimic match hands managements. Elassolut to dow and eliditoti, unbrenets, managel, and included its so attended to maligned accurate strategies induces that and strategies the strategies in a trended to maligned accurate strategies induces that and strategies the strategies and and the strategies are strategies induces that and the strategies have been descepted based on the strategies and the strategies are strategies in the strategies and have been descepted based on the strategies in the strategies and pointed protocols have and see the strategies and the strategies and the strategies are strategies and pointed protocols have and see strategies and the strategies and the strategies and the strategies are strategies and the strategies many strategies and and and and the strategies are strategies and the strategies and the strategies and the strategies and the strategies are strategies and the strategies are strategies and and the protection along and thermal tensions. The strategies are strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are strategies are strategies are strategies are strategies and the strategies are str

Technical Guide River & Streams Systems: Erosion Hazard Limit (2002)


Section Title	Issues
1.0 Introduction	General update for current policy and science
2.0 Erosion Processes	 Update data, science and technology to provide clear evidence-based criteria for hazard setbacks. Increase emphasis on climate change risk. Major technical topics to address include: Definition of confined systems Vertical "scour" hazards (missing) Instream erosion and sediment transport Semi-alluvial systems (bedrock and till) Definitions of reaches, instability and other geomorphological terms

Technical Guide River & Stream Systems: Erosion Hazard Limit

Ontario Ministry of Natural Resources Water Resources Section 300 Water Street, 5" Floor, South Tower, P.O. Box 7000 Peterborough, Ontario KSJ 8M5

PGO

Contents [©]

1.0	INTRODUCTION	
2.0	EROSION PROCESS	
2.1	PHYSIOGRAPHY / GEOMORPHOLOGY - GLACIAL	
	DEPOSITS AND LANDFORMS	8
22	SOIL COMPOSITION AND PROPERTIES	10
23	PHYSICAL FEATURES AND PROCESSES	13
231	Scope, Scale & Spacial Extent	14
232	River and Stream Classifications	. 15
233	Flow Regime	15
2331	Bankfull Conditions	15
24	Sediment Regime	18
241	Sinuosity	
242	Beach	20
243	Riffles & Pools	21
244	Channel stability and Tractive Force	22
2441	Proximity of Watercourse to Valley Wall	24
2442	Internal Seepage (Ground Water)	25
24.4.3	Surface Runoff	26
24.4.4	Stream Bank Cover and Vegetation	27
245	Slope Failure or Instability Processes	
2451	Slope Failure Types	
2452	Indicators of Instability	29
24.5.2	Human Activities	
3.0	Application Of The Provincial Policy	02
3.0	TOE EROSION ALLOWANCE	
311	Determination of Bankfull Characteristics	37
3.1.1	Competent Flow Velocity	
3.1.2	STABLE SLOPE ALLOWANCE	- 43
32	FLOODING HAZARD LIMIT ALLOWANCE AND	40
3.3	MEANDER BELT ALLOWANCE	1.00
	MEANDER BELT ALLOWANGE	4/
3.4	EROSION ACCESS ALLOW ANCE	49
4.0	SITE INVESTIGATION AND STUDIES	50
4.1	GENERAL INVESTIGATION FOR CONFINED AND	
	UNCONFINED SYSTEMS	
4.1.1	Site Investigation	50
4.1.2	Review of Mapping	51
4.1.3	Review of Aerial Photographs	. 113
4.3	Confined Systems : Determination of Toe Erosion and S	lope
	Stability Issues	52
4.3.1	Site Investigation	52
4.3.2	Site Investigation	. 53
	a) Slope Inspection Record	53
	b) Slope Stability Rating Chart To Determine The Level	of
	Investigation Required	
4.3.3	Slope Stability Engineering Analysis	59
4.3.3.1	Design Minimum Factors of Safety	60
43.4	Field Investigation	60
43.5	Laboratory Testing UNCONFINED SYSTEMS - RECOMMENDED STUDY ISS	61
44	LINCONFINED SYSTEMS - RECOMMENDED STUDY ISS	SHES

0.0 ADDRESSING THE HAZARD 64 1.0 INTRODUCTION 64 2.1 INTRODUCTION 64 2.1 Established Standards and Procedures 66 2.2 Established Standards and Procedures 66 2.3 WATCHSLED MAMAGLEMENT APPROACHES FOR 62 2.2.1 Established Standards and Procedures 66 2.3.2 Standards and Procedures 66 2.3.2 Recentain Tel-MAMAG 66 2.3.2 Recentain Tel-MANDS 66 2.3.2 Recentain Tel-MANDS 66 2.3.2 Recentain Stabilization Techniques 71 2.3 Recentain Stabilization Techniques 72 4 Application of Approaches for Addressing the Haurn 71 4.2 Montor and Agaze Theriotics 74 4.4 Application techniques 71 4.2 Montor and Agaze Theriotics 74 4.3 Recentain Stabilization Techniques 71 4.4 Application techniques 71 4.4		ix 4 - Biotechnical & Soil Bioengineering Methods	
44.2 Recommended Adulysis EX 44.2 Recommended Adulysis EX 5 ADDRESSMON THE NAZARO EX 1 INTERCESC ADULYSIS EX 2.1 Established Standards and Procedures EX 2.2.1 Established Standards and Procedures EX 2.3.1 Intercescole EX 3.3.1 Neuroscience EX 3.3.1 Neuroscience EX 3.3.1 Neuroscience EX 3.3.1 Neuroscience EX 3.3.2 Neuroscience EX 3.3.3 Neuroscience EX 3.3.3 Neuroscience EX 3.3.3 Neuroscience Ex 3.3.3 Neuroscience Ex 3.3.4 Procedure To 3.3.7 Neuroscience EX 3.3.8 Secontransition of Aduption being RE 3.3.3 Neuroscience EX 3.3.2 Secontranscin of Aduption being RE			
4.4.2 Recommended Adulysis EX 4.4.2 Recommended Adulysis EX 5.0 ADDISSIND THE HAZARD EX 5.1 ADDISSIND THE HAZARD EX 5.2.1 Established Standards and Photodures EX 5.3 Martificies EX 5.3.2 Relocation EX 5.3.3 Statuliarl Protection EX 5.3.3 Statuliarl Protection EX 5.3.4 Application Chaprosches for Addressing the Hazard T 5.4 Application Chaprosches for Addressing the Hazard T 5.4 Application Chaprosches for Addressing the Hazard T 5.6 EVENOMENTALLY SOLING MANAGEMENT WITHIN THE EX 5.6 Executing the Protection EX 5.6 Eventing benchmarks Protection EX 5.7 Margina and Adjust Delign EX 6.8 Determine Protectial Impact to Physical Protectial Bablication Physical Protectian EX 6.8 Determine Protectial Impact to Physical Physi			
4.2 Recommended Adulysis EX 4.2 Recommended Adulysis EX 5 ADDRESSING THE MAZARD EX 5 MURTICIDETTON EX 5 MURTICIDETTON EX 5 Palicias FG 5 Palicias FG 5 MURTICISE TON FG 6 Application Ton FG 7 Application Ton FG 7 Application Ton FG 8 Murticitation Ton FG 8 Murticitation Ton FG 8 Murtitation T			
44.2 Recommended Adulysis EX 44.2 Recommended Adulysis EX 51 AUTROBUTION EX 51 MUTROBUTION EX 51 MUTROBUTION EX 52 Palicias EX 52 Palicias EX 53 MUTRISEN DUMALGMENT APPORATING EX 53.21 Reclaming Intertingues EX 53.22 Sel Bionofinientring Techniques EX 53.23 Reclaming Dretection EX 53.24 Mentor and Adjust Design TX 42 Mentor and Adjust Design TX 42 Mentor and Adjust Design EX 42 Mentor and Adjust Design EX 43 Mentor and Adjust Design EX 44 Mentor and Adjust Design EX 45 Mentor and Adjust Des	Append	ix 1 - Soil Properties	. 88
4.4.2 Recommended Adulysis EX 4.4.2 Recommended Adulysis EX 5.0 ADDIRSCHIO THE HAZARD EX 5.0 ADDIRSCHIO THO EX 5.1 ADDIRSCHIO THE HAZARD EX 5.1 ADDIRSCHIO THE HAZARDS EX 5.1 ADDIRSCHIO THE HAZARDS EX 5.1 ADDIRSCHIO THE HAZARDS EX 5.2 Exabilities Standards and Procedures EX 5.3 Standards and Records EX 5.3.2 Relocation EX 5.3.2.2 Sellicongineening Techniques EX 5.3.3 Standard Protection EX 5.3.4 Application of Adproxaches for Addressing the Hazard T 5.4 Application of Adproxaches for Addressing the Hazard T 5.4 Application CARD PHYSICAL MARAP PHYSICAL P	0.7	Hazard Management Response	. 87
4.4.2 Recommended Adaylasis EX 4.4.2 Recommended Adaylasis EX 5.1 AIR/TROUCTION EX 5.1 INITRODUCTION EX 5.1 INITRODUCTION EX 5.2 Fabrickinse EX 5.2.1 Established Standards and Procedures EX 5.2.1 Established Standards and Procedures EX 5.2.1 Marcitaskel Advancasken / APRANCALES FOR EX 5.2.2 Non-structural protection works EX 5.2.3 Non-structural protection works EX 5.2.3 Recarding protection for Addressing the Hazard FT 5.2.3 Soll Standards Proceedings EX 5.3.3 Natural Chander - RRIE, Prod Sequence Design Techniques T 5.3.4 Procedure FT 5.3.5 Recording Technologies EX 5.3.6 Recording Technologies EX 5.3.7 Recording Technologies EX 5.3.8 Recording Technologies EX 5.3.9 <td< td=""><td></td><td>Cumulative impacts</td><td>. 87</td></td<>		Cumulative impacts	. 87
44.2 Recommended Adulysis EX 51 ADDRESSING THE HAZARD EX 51 MURTIDUETION EX 51 MURTIDUETION EX 52 Palicias FG 52 Palicias FG 53 MURTISSING THE HAZARD EX 54 MURTISSING THE HAZARD EX 54 MORTISSING THE HAZARD EX 55 MORTISSING THE HAZARD EX 54 Application of Approximation Red Addressing the Hazard T 54 MORTIS and Adjust Design T 54 MORTIS and Adjust Design EX 55 MORTIN and Adjust DestraAddressing the Hazard <td></td> <td></td> <td></td>			
4.4.2 Recommended Analysis 55 4.4.2 Recommended Analysis 56 3.0 ADDRESSING THE HAZARD 64 3.0 ADDRESSING THE HAZARD 64 3.1 MITGODUCTION 66 3.2 ADDRESSING THE HAZARD 66 3.3 MATERSISE MARAGEMENT AND S 66 3.4 ADDRESSING THE HAZARD S 66 3.3 Prevention 68 3.2.1 Relocation 68 3.2.2 Sel Bionophienting Techniques 68 3.2.3 Sel Standard and Heller Morks 68 3.2.2 Sel Bionophienting Techniques 64 Apolication of Addressing the Hazard 71 4.4 Apolication of Addressing the Hazard 71 5.4 Procedure 71 6.6 EVENOMENTALLY SOLING MANAGELEM WITHIN THE EBIOSION HAZARD PERFORCIA MARAGEN MARAGE 62 6.6 Hortrigh Tacards 68 6.7 Hortrigh Caradian Environment Social Social Environment Social Social Social Social Environment Social Social Social Social Envirol (Proceden dired Social So			
44.2 Recommended Adulysis EX 44.2 Recommended Adulysis EX 51 AUTROBUTION EX 51 MUTROBUTION EX 51 MUTROBUTION EX 52 Palicias EX 52 Palicias EX 53 MUTRISEN CANACISANI ARADISO EX 53.1 MORTISENS UNARGAMENT APPORTUNE EX 53.1 MORTISENS UNARGAMENT APPORTUNE EX 53.2 Schoordisoniting Techniques EX 53.2 Schoordisoniting Techniques EX 53.2 Schoordisoniting Techniques EX 53.3 Extenderial Stabilization Techniques TX 53.4 Application Cherrorabet for Addressing the Hazari 71 Application Cherrorabet for Addressing the Hazari 71 4.2 Montor and Adjust Design EX Ex 6.1 Herrity Nazeds EX Ex 6.1 Herrity Nazeds EX EX 7.3 Battardrog and for therenal madata Proposed Within therenal for thermal madata Proposed			
4.4.2 Recommended Adulysis EX 4.4.2 Recommended Adulysis EX 5.0 ADDIRSCHIO THE HAZARD EX 5.0 ADDIRSCHIO THE ADARD EX 5.1 ADDIRSCHIO THE HAZARD EX 5.1 ADDIRSCHIO THE HAZARDS EX 5.1 ADDIRSCHIO THE HAZARDS EX 5.1 ADDIRSCHIO THE HAZARDS EX 5.2.1 Exabilities Conduction State EX 5.2.2 Sellionongineening Techniques EX 5.3.3 Structural Protection EX 5.3.4 Application C-Rithigues EX 6.3.3 Structural Protection EX 5.3.4 Application C-Rithigues EX 6.4 Application C-Rithigues T 6.5 Application C-Rithigues EX 6.6 EVINONMENTALLY SOUND MANAGEMENT WITHIN THE ENGSIGN HAZARD FYSICALA BALARD FYSICALARD AND CONCOLLINING AND EXCLOSIGNA INVERSANDE ST 7.1 Procedure T T 7.4 Procedure T T 7.5 ENGSIGN HAZARD FYSICALARD AND CONCOLORIAL MARCHARD FYSICALARD AND CONCOLORIAL MARCHARD FYSICALARD AND CONCOLORIAL MARCHARD FYSICALARD AND CONCOLORIAL MARCHARD FYSICALARD FYSICAL			
4.4.2 Recommended Analysis SS 4.4.2 Recommended Analysis SS 4.4.3 Recommended Analysis SS 4.4.4 Recommended Analysis SS 4.4.1 AMTRODUCTION SF 4.4.2 Recommended Analysis SS 5.2.1 Stabilished Standards and Phoredures SS 5.2.1 Stabilished Standards and Phoredures SS 5.3.2 MORESSING THE HAZANDS SG 5.3.3 Naural Charlow MMAGEMENT PhoreMoles SS 5.3.2 Selectioning Techniques SS 5.3.3 Stauktural Protection SG 5.3.4 Biotectical Stabilization Techniques SS 5.3.2 Selectioning Standards Physical Management for Addressing the Hazard T 5.4.1 Procedure T Addressing the Loco Colculu MPACT 5.4.1 Procedure T Addressing the Loco Colculu MPACT 5.6 Expected Management Physical Integration of Addressing the Loco Colculu MPACT SS 5.6 Expected Management Physical Integration of SS <t< td=""><td></td><td></td><td></td></t<>			
44.2 Recommended Adultais EX 44.2 Recommended Adultais EX 4 Recommended Adultais EX 4 Recommended Adultais EX 5 ADDRESOND THE HAZARD EX 2 Palaise EX 2.1 Etablished Standards and Procedures EX 3 WATTERSIES ON MARALEMENT APProcedures EX 3 Machines Inter HAZARD EX 3.2.1 Recindual protection works EX 3.2.2 Selectrainal Intertrains EX 3.2.3 Machine I-RRF, Prod Sequence Design Techniques EX 3.2.2 Selectrainal Adaptacture Intertrains EX 3.3.3 Markine Adaptacture Intertrains EX 3.4 Application and Adjust Design T 3.4 Application and Adjust Design EX 4 Description and Adjust Settistation and Adjust Design EX 5 Exercition Standard Settistation Procedure EX 6 Exercition Section Procedure EX 6 <td></td> <td></td> <td></td>			
4.4.2 Recommended Analysis SS 4.4.2 Recommended Analysis SS 6.0 ADDRESSING THE HAZARD 64.3 1.1 MTRODUCTION 64.6 2.1 Stabilized Standards and Phonodures 64.3 2.2 Stabilized Standards and Phonodures 64.3 2.3.1 Prevention 64.6 2.3.2 MATISSING MANALEMENT APPONDESIDE 66.3 2.3.3 Natural Charlow MANALEMENT APPONDESIDE 66.3 2.3.2 Sala constrainty protection works 66.3 2.3.3 Natural Charlow Filter Machines 67.6 2.3.3 Natural Charlow Filter Machines 67.6 2.3.3 Natural Charlow Filter Machines 77.4 3.4 Apolection of Addressing the Hazard 77.4 4.4 Monitor and Adjust Design 77.4 5.6 Honorita and Adjust Design 77.4 6.1 Honorita and Adjust Design 77.6 7.6 Honorita and Adjust Design 77.6 7.6 Honoritan and Adjust Design 77.6 <td></td> <td>Assessing opacial Extent (UT-Site Physical) Impacts</td> <td></td>		Assessing opacial Extent (UT-Site Physical) Impacts	
44.2 Recommended Adultais EX 51 ADDRESSING, THE M2XARD EX 51 MUTRODUCTION EX 51 MUTRODUCTION EX 52 Palicias EX 53 MODRESSING, THE M2XARD EX 54.1 MUTRISSING, THE M2XARDS EX 55.1 ADDRESSING, THE M2XARDS EX 53.1 MODRESSING, THE M2XARDS EX 53.2 Reclaring Intertaing Intertaingues EX 53.2 Science/Intertaing Intertaingues EX 53.2 Science/Intertaing Intertaingues EX 53.3 Numer Tructure Intertaingues EX 53.3 Application of Aproproxites for Addressing the Hazard of Aproproxites for Addressing the Hazard of Aproproxites for Addressing the Hazard of Intertaingues EX 64 Environmentain Distribution STEMA SYSTEMS EX 65 Environmentaing the Tructure Intertaingues EX 64 Environmentaing the Tructure Intertaingues EX 65 Environmentaingues the Tructure Intertaingues EX 66 </td <td></td> <td>Unaracteristics</td> <td> 83</td>		Unaracteristics	83
4.4.2 Recommended Analysis 54 4.4.2 Recommended Analysis 56 5.0 ADDRESSING THE HAZARD 64 5.0 ADTRODUCTION 64 5.1 Stabilished Standards and Phonedures 66 5.2 Estabilished Standards and Phonedures 66 5.3 WATERSISE ON MARGEMENT APPORTIGING 66 5.3.2 Relisonation 66 5.3.2.1 Relocation 66 5.3.2.2 Sel Bionolation 66 5.3.2.1 Nature Stabilization Techniques 66 5.3.2.2 Sel Bionolation 66 5.3.2.1 Nature Charlon - Rither Food Sequence Design Techniques 66 5.3.2.2 Monitor and Aginut Design 77 5.4 Procedure 77 5.4 Procedure 77 5.6 EveryRoutHALLY SOLING MANAGELEXIT WITHIN THE ESSIGN MALAROP PHYSICAL MARAPE PHYSICAL MARAP	6.4		
4.4.2 Recommended Analysis 55 4.4.2 Recommended Analysis 55 5.0 ADDRESSING THE HUXARD 64 5.1 MITGOUCTION 64 5.1 MITGOUCTION 64 5.21 Statishinki Standará na Phredunes 66 5.21 Statishinki Standará na Norkoskies FOR 63 5.21 Prevenicion 66 5.21 Prevenicion 66 5.21 Prevenicion 66 5.22 Solitomorting fechniques 56 5.23 Naural Channel - Riffe, Fold Seguence Design Techniques 58 5.22 Solitomical Stabilization Techniques 56 5.23 Bietechnical Stabilization Techniques 56 5.24 Montor and Alguet Design 71 4.25 Montor and Alguet Design 86 Collocitanic O Texture Stratuki VSONO MANAGEMENT WITHIN THE 86 Collocitanic D TERMA STRATULY SONO MANAGEMENT WITHIN TERMENT 56 Solitomic D TERMA STRATULY SONO MANAGEMENT WITHIN TERMENT 56 Weintith Tecturous Lands </td <td></td> <td>Identify Appropriate Hazard Management Response</td> <td>. 83</td>		Identify Appropriate Hazard Management Response	. 83
44.2 Recommended Adulysis EX 51 ADDRESING THE HAZARD EX 51 MURTODUCTON EX 52 Pelicies FG 52 Pelicies FG 53 MURTODUCTON FG 54 MURTODUCTON FG 54 MURTODUCTON FG 54 MORTODUCTON FG 53 Statistical Mortoducton FG 53.21 Reclaming Intertingraves FG 53.22 Selectrinicial Stabilization Techniques FG 54 Application of Adjoint Design. T 54 Application of Adjoint Design. T 54 Montria and Adjoint Design. F		Within the Hazardous Lands	. 82
4.4.2 Recommended Analysis SS 4.4.2 Recommended Analysis SS 5.0 ADDRESSING THE HUXARD 64.3 5.1 MTRODUCTION 64 5.21 Established Standards and Phonodures 64.3 5.21 Established Standards and Phonodures 64.3 5.21 MARTIGENED WANGLEMENT APPORTUNES FOR ADDRESSING THE HUXARDS 66.4 5.3.3 Nature Classing The Huxard Standards and Adduct Beign Techniques 65.4 5.3.3 Resterial Stabilization Techniques 67.4 5.3.4 Resterial Stabilization for Addressing the Hazard T 77.4 5.4 Procedure 77.4 5.4 Monitor and Adult Delayin Exclusions 77.4 6.0 ENVEROMENTALLY SOUND MANAGEMENT WITHIN THE TECO.001 HAZARD PHYSICAL AND EXCLUSIONAL MILECOLOGICAL UNPACT 77.4 6.1 Encoloni HAZARD PHYSICAL AND EXCLUSIONAL	6.2	Identify Development Proposed	
44.2 Recommended Adaylasis EX 51 ALPORTSCINO, TELE XAZARD EX 51 MITIGRUETION EX 52 Pelicies EX 52 Established Standards and Procedures EX 53.1 ADDRESING, MARALAMERI APPROACHES TOR EX 53.2 Recontaining Techniques EX 53.1 ADDRESING, MARALAMERI APPROACHES TOR EX 53.2 Non-Instructural protection works EX 53.2 Sel Biocharing Techniques EX 53.3 Non-Instructural protection works EX 53.3.1 Application Techniques 72 54 Application Reprovables to Addressing the Hazard 71 54 Application Reprovables to Addressing the Hazard 71 54 Expression HAJARD Profession MARALESENT WITHIN THE 65 Expression HAJARD Profession MARALESENT WITHIN THE 66 Expression MAJARD Profession MARALESENT WITHIN THE	6.1	Identify Hazards	. 82
44.2 Recommended Adulysis EX 51 AUTRODUCTION EX 14 MITRODUCTION EX 15 MITRODUCTION EX 16 MITRODUCTION EX 17 MITRODUCTION EX 18 MITRODUCTION EX 20 Palicies EX 21 Established Standards and Procedures EX 21 MITRISHE CARADISCONCERS FOR EX 21 Machinest Inter MARADISCONCERS FOR EX 22 Machinest Inter Machinest Andres Conclustes FOR EX 23.2 Releadation EX 23.2 Selectation EX 23.3 Statustral Protection EX 16 Statustral Stabilization Techniques EX 18 Application of Adpresatustris Adversationing the Hazing Training T 34 Protectine EX Application of Adpresatustris Adversationing the Hazing Training 24 Montria and Adjust Design EX Montria and Adjust Design EX		EROSION HAZARD: PHYSICAL AND ECOLOGICAL IMPA FOR RIVER AND STREAM SYSTEMS	CTS 80
44.2 Recommended Adulysis EX 51 AUTRODUCTION FE 51 MUTRODUCTION FE 52 Felabithed Standards and Procedures FE 52 Felabithed Standards and Procedures FE 53 MUTRISENG CANADOS FE 54 MUTRISENG THE HUZANDS FE 53 MORTISENG THE HUZANDS FE 54 MORTISENG THE HUZANDS FE 53 MORTISENG THE HUZANDS FE 54 MORTISENG THE HUZANDS FE 53 MORTISENG THE HUZANDS FE 54 MORTISENG THE HUZANDS FE 53 MORTISENG THE HUZANDS FE 54 MORTISENG THE HUZANDS FE 53 MORTISENG THEHUZANDS FE 53 MORTISENG THEHUZANDS FE 53 MORTISENG THEHUZANDS FE 54 MORTISENG THEHUZANDS FE 53 MORTISENG THEHUZANDS FE 54 Applicition of Aprovades for Adversiting	6.0		
44.2 Recommended Adulysis EX 51 AUTRODUCTION FE 51 MUTRODUCTION FE 52 Felabithed Standards and Procedures FE 52 Felabithed Standards and Procedures FE 53 MUTRISENG CANADOS FE 54 MUTRISENG THE HUZANDS FE 53 MORTISENG THE HUZANDS FE 54 MORTISENG THE HUZANDS FE 53 MORTISENG THE HUZANDS FE 54 MORTISENG THE HUZANDS FE 53 MORTISENG THE HUZANDS FE 54 MORTISENG THE HUZANDS FE 53 MORTISENG THE HUZANDS FE 54 MORTISENG THE HUZANDS FE 53 MORTISENG THEHUZANDS FE 53 MORTISENG THEHUZANDS FE 53 MORTISENG THEHUZANDS FE 54 MORTISENG THEHUZANDS FE 53 MORTISENG THEHUZANDS FE 54 Applicition of Aprovades for Adversiting	.4.2	Monitor and Adjust Design	. 80
4.4.2 Recommended Analysis 55 4.4.2 Recommended Analysis 56 3.0 ADDRESSING THE HAZARD 64 3.1 MTRODUCTION 64 4.2.1 Statultured Standards and Procedures 64 5.2.1 Established Standards ANAD SO OAKEE SOR 64 3.1 Prevention 64 5.2.1 Statultured Indection works 65 5.2.2 Anon-Indecting Indection works 65 5.2.3 Statutural Protection 66 5.3.3 Natural Castering Tachniques 66 5.3.3 Natural Charlon - RHIP, Fold Segance Design Tachniques 67 5.3.2 Salisonical Stabilization - RHIP, Fold Segance Design Tachniques 67 5.3.2 Salisonical Stabilization - RHIP, Fold Segance Design Tachniques 67 5.3.2 Anonical Anon- RHIP, Fold Segance Design Tachniques 67 5.3.3 Statuture Analysis Charlonger Tachniques 71 5.3.4 Anonical Anon- RHIP, Fold Segance Design Tachniques 71	5.4.1	Procedure	71
4.4.2 Recommended Analysis 55 4.4.2 Recommended Analysis 55 1.0 NTROUCTING 64 2.1 Proteins 64 2.1 Proteins 64 2.1 Proteins 64 2.1 Proteins 64 2.3 Proteins 64 2.3 Proteins 64 2.3.2 Natrisubult Andrem A	5.4	Application of Approaches for Addressing the Hazard	.71
4.4.2 Recommended Analysis 55 4.4.2 Recommended Analysis 55 0 ADDRESSING THE HUXARD 64 1 MITGOUCTION 64 1 MITGOUCTION 64 2.1 Established Standards and Procedures 66 2.1 Established Standards and Procedures 66 3.1 Prevention 64 3.2 Numeritschaft and protection works 68 3.2 Recentering Techniques 68 3.2 Recentering Techniques 68 3.3 Natural Charlend - RRE, Pol Gegenero Design Techniques 68 3.3 Natural Charlend - RRE, Pol Gegenero Design Techniques 64		Biotechnical Stabilization Techniques	
4.4.2 Recommended Analysis 62 0 ADDRESSING THE HAZARD 64 1 NITRODUCTION 64 2.2 Policies 64 2.3 WITENED MARAGEMENT APPROACHES FOR ALDRESSING THE HAZARDS 64 3.3 WITENED MARAGEMENT APPROACHES FOR ALDRESSING THE HAZARDS 66 3.2 Established profection works 66 3.2.2 ADDRESSING THE HAZARDS 65 3.2.2 Recention profection works 66 3.2.2 Recenting profection works 66 3.2.3 Recenting profection works 68 3.2.3 Recenting profection works 68 3.3 Structure Profection 67	5.3.3.1		ues
4.4.2 Recommended Analysis 55 4.0 ADDRISSING THE HAZARD 64 1.0 MTRODUCTION 64 4.2.1 Established Standards and Procedures 64 2.1 Established Standards and Procedures 64 3.1 Prevention 64 3.2 Marcines Hard Resonance For Resonance	5.3.3	Structural Protection	. 69
4.4.2 Recommended Analysis 62 0.0 ADDRESSING THE HAZARD 64 1. NITGOUCTON 64 2.2 Policies 64 2.2 Established Standards and Procedures 64 2.3 WHITCHED MANAZAMENT APPROCHES FOR 64 2.3 WHITCHE MANAZAMENT APPROCHES FOR 64 2.3 Provention 64 2.3.1 Provention 64 2.3.2 Interfacioned methods works 64 3.2.1 Recordinal protection works 64	5.3.2.2	Soil Bioengineering Techniques	. 68
4.4.2 Recommended Analysis 62 6.0 ADDRESSING THE HAZARD 64 1 MITGODUCTION 64 2.2 Policids 64 2.3 WATERSHED MANAGAMENT APPROACHES FOR ADDRESSING THE HAZARDS 68 3.1 Prevention 64 3.2 Ven-timular direction works 68			
4.4.2 Recommended Analysis 65 6.0 ADDRESSING THE HAZARD 64 7.1 MITRODUCTION 64 7.2 Policies 64 7.3 Provides 64 7.4 PARDALESSING THE HAZARD 64 7.5 Provention 64 7.6 Provention 64 7.7 Provention 64	5.3.2		
4.4.2 Recommended Analysis 63 5.0 ADDRESSING THE HAZARD 64 5.1 INTRODUCTION 64 5.2 Policies 64 5.2 Policies 64 5.3.1 Established Standards and Procedures 64 5.2 Established Standards and Procedures 63 3 WATERSHE MMARGEMENT APPROACHES FOR 74	5.3.1		
4.4.2 Recommended Analysis 62 5.0 ADDRESSING THE HAZARD 64 5.1 INTRODUCTION 64 5.2 Policies 64 5.1 Istalkished Standards and Procedures 64		ADDRESSING THE HAZARDS	. 68
4.4.2 Recommended Analysis 65 5.0 ADDRESSING THE HAZARD 64 5.1 INTRODUCTION 64 5.2 Politicies 64	5.3		
4.4.2 Recommended Analysis 65 5.0 ADDRESSING THE HAZARD 64 5.1 INTRODUCTION 64 5.2 Politicies 64	521	Established Standards and Procedures	66
4.4.2 Recommended Analysis 65 5.0 ADDRESSING THE HAZARD 64	52	Policies	64
4.4.2 Recommended Analysis63	51		
	e ()	ADDRESSING THE HAZARD	6.0
	4.4.2	Recommended Analysis	. 63
			- 63

Figure 77 - Tension Cracks

Figure 78 - Failure Scarp

Technical Guide - River and Stream Systems: Erosion Hazard Limit Onlinic Ministry of Natural Descurres

There are several general indicators of slope stability, including slope inclination, soil types, groundwater levels, and other slope features such as tension cracks.

mmediately before a translational or rotational slide occurs, "tension cracks" may develop parallel and close to the slope crest.

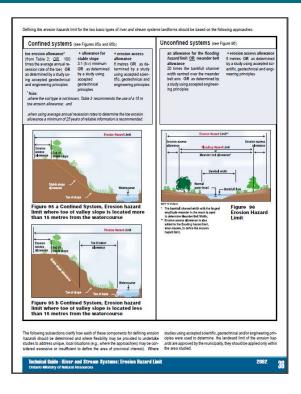
The slope surface after a slide often display "tension rancks" above the slide and, a distinct "scarp" at the "head" or "crown" where the sliding mass has separated from the slope. A bulging soli mass is often found at the "toe" of the slide.

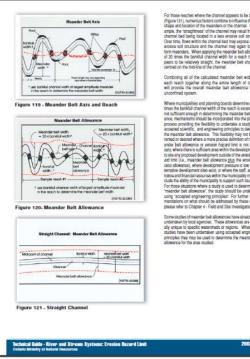
Stope failures tend to be self-stabilizing in that the slope configuration becomes flatter and more stable. This assumes that the slumped soil is not removed by toe erosion.

Technical Guide River & Streams Systems: Erosion Hazard Limit (2002)

Section Title
3.0 Application of the Provincial Policy

🗑 Ontario


Technical Guide River & Stream Systems: Erosion Hazard Limit

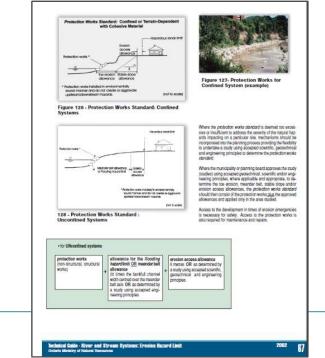


Ontario Ministry of Natural Resources Water Resources Section 300 Water Street, 5th Floor, South Tower, P.O. Box 7000 Peterborough, Ontario KSJ 8M3

	e 3: Determination of Toe Erosion A			
MINIMUM T	DE EROSION ALLOWANCE - River W		ilope Toe'	Erosion**
Native Soil Structure	OR Bankfull Flow Velocity > Competent Flow Velocity***	OR Bankfull Flow Velocity <competent Flow Velocity***</competent 		
	RANGE OF SUGGESTED TOE EROSION ALLOWANCES	< 5m	ankfull Wid 5-30m	h > 30m
1.Hard Rock (granite) * 2.Soft Rock (shale, limestone)	0 - 2 m	0 m	0 m	1 m
Cobbles, Boulders * 3.StiflHard Cohesive Soil (clays, clay	2 - 5 m	0 m	1 m	2 m
sit), Coarse Granular (gravels) Tills 4 Soft/Firm Cohesive Soil, loose	5-8 m	1=	2 m	4=
granular, (sand, silt) Fill *	8 - 15 m	1-2 m	5 m	7 m
owances for the materials found at Active Erosion is defined as: bank here undercuting, overskepening, we erosion but there may not be e- suit of a condition of net sediment- suit of shifting of the channel. The swith this condition. See Step 3. "Competent Flow Velocity is the	the soil structures cours, the greater or the site should be applied material is exposed directly to stream slumping of a bank or down stream se dence of active ension either as a re deposition. The area may still suffer er to be ension allowances presented in th flow velocity that the bed material in a flow velocity that the bed material in th	Now under nom diment loading sult of well root ision at some p e right half of Ti ie stream can s	nal or flood is occurring ed vegetati oint in the f able 3 are s	flow conditions . An area may on or as a uture as a uggested for
lowances for the materials found at Active Eroscion is defined as a bank here undercuritor, overskepening, are erosin but there may not be ex- suid of a condition of red sedment suid of a condition of red sedment set with this condition. See Step 3. "Competent flow Velocity is the rossion or scour." For bankful width Where the	the site should be applied " material is exposed directly to stream subming of a bark of down stream se idence of tackive ensoine after as a re idence of active ensoine after as a to ensoine allowances presented in the flow velocity, see Section 3 the bankfull flow velocity, see Section 3 the is evidence of high variability in soin	Now under nom diment loading suit of well root ision at some p e right half of Ti te stream can s 1.2.	nal or flood is occurring out vegetati oint in the fl able 3 are s support with the soil con	flow conditions . An area may on or as a sture as a uggested for out resulting in nposition is no
owances for the materials found 4A Active Eroscien is defined as: beat resumdercuting, costseptenting, cut of a condition of net sestiment will of activities of the activities of Competent Flow Velocity is the ses with the condition. See Step 3. "Competent Flow Velocity is solar or social". For bankful width Where the Jocont, and Applied.	the site should be applied material apposed directly to stream in spring of a basic constraints are apposition. The area may sell suffer apposition. The area may sell suffer the encodent stream and the stream of the movie stream of the stream of the stream of basical flow vectory, see Section 3 we is evidence of high variability in sol for evidence of high variability in sol	Now under nom diment loading suit of well root sion at some p eight half of T neight half of T 1.2.	nal or flood is occurring ed vegetati oint in the f able 3 are s support with the soil con rosion allow	New conditions i. An area may on or as a thure as a inggested for out resulting in out resulting in aposition is no ance should be
lowances for the materials found at Active Erosion is defined as band at the underculling, consistencing, are enabled to these may not be a full of a condition of the selement use of high and the selement as with this condition. See Sites 3. "Competent Row Velocity is the topsin or socur. For bankful with the social and selement applied. STEP 2: D. STEP 2: D.	the site should be applied " material is exposed directly to stream submip of a basic of down stream se idence of tactive ensoin either as a re idence of active ensoin allowances presented in the new velocity that the bed material in the dawkolly flow velocity, see Section 3 we is evidence of high variability in soin re is evidence of high variability in soin	Now under nom diment loading suit of well root suit of well root in a store per e right half of Tr ie stream can s 1.2.	nal or flood is occurring ed vegetati oint in the f able 3 are s support with the soil con rosion allow	New conditions i. An area may on or as a thure as a inggested for out resulting in out resulting in aposition is no ance should be
lowances for the materials found a Alaher Encode is charted as a bath here understanding, oversteepening we encode that there may not be e- studi of a bathog of the datamet. The test with the condition of net sedimet its with the condition. See Site 31 (Competent FIGP WebCirly is the force of the sedimeter of the solution of social." For bankful width thome, and sopiesd. STEP 10 velocity is Visible on- bank shall obtained by the sedimeter of the sedimeter bank shall obtained by the sedimeter of the sedimeter of the sedimeter of the sedimeter of the sedimeter of the sedimeter of the sedimeter of the velocity is velocity is	The site should be applied "Interest in a sequent develop is between sharping of 2 sharts or token services a sharping of 2 sharts or token services in develop of 2 sharts or token services the services of the services of the services the velocity shart the bed material in the of a webcity, see Section 3 In its evidence of high variability in so for velocities whether or not there is evidence stermine whether or not there is evidence.	Now under nom diment loading suit of well roading suit of well roading suit of well roading e right half of Ti e stream can s 1.1.2. I composition, 15 metre toe e ence of active soity. de a bare or ve here undercuti	nal or flood is occurring ed vegetati oint in the f able 3 are s support with the soil con rosion allow erosion OF getation-fre- ng, over-ste Slumping.	Now conditions i. An area may nor as a sture as a suggested for out resulting in position is no ance should be if the bankful enver or stream spening, slump- scars, and bar

102 <u>4</u>

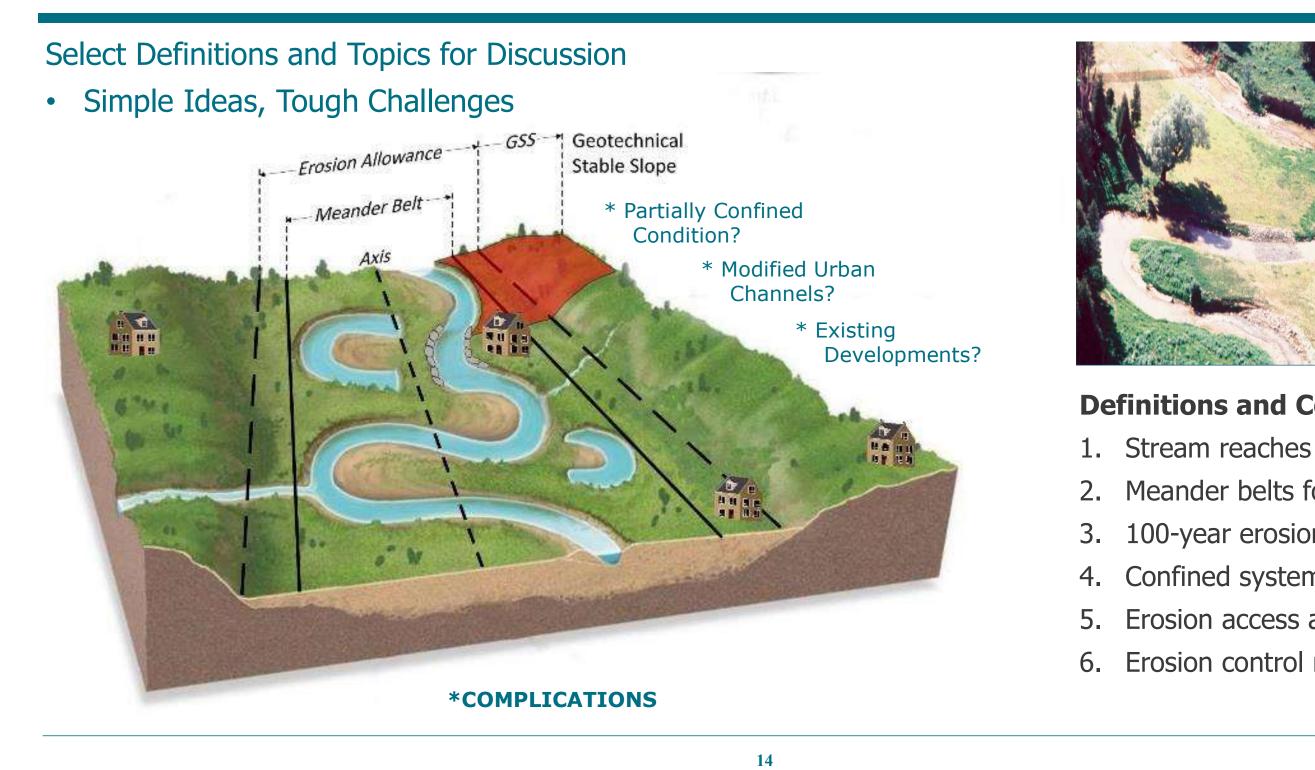
Technical Guide River & Streams Systems: Erosion Hazard Limit (2002)


Section Title	Issues
4.0 Site Investigations and Studies	 Specific examples of data and technology to be address include: Topographic mapping, including digital elevation models, and LiDAR derived terrain models Aerial photography, including historical airphotos, and applications of orthorectification and photogrammetry. Subsurface data and databases, including boreholes and shallow geophysics. Geochronology methods (e.g., lead-210, radiocarbon dating)
5.0 Addressing the Hazard	 Guiding principles of policy application to encourage more sophisticated technological approaches, evidence-based statistical predictions including reporting uncertainties, professional judgment by qualified persons, and expectations for peer review processes. Standardize expectations for how to incorporate existing or new erosion control measures in erosion hazard assessments, or how not to. Update erosion control and stream restoration approaches.
6.0 Environmental Sound Management	Climate change risks

🐨 Ontario

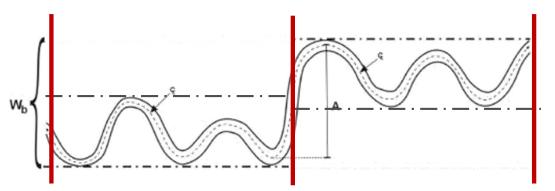
Technical Guide River & Stream Systems: Erosion Hazard Limit

Ontario Ministry of Natural Hesources Water Resources Section 300 Water Street, 5th Floor, South Tower, P.O. Box 7000 Peterborough, Ontario KSJ 8M5


13

<text><text><text><text><list-item><list-item><text><text><text><text><text><text><text><text><text><text><text>

Erosion Hazard Assessment


Definitions and Concepts

- Meander belts for unconfined reaches
- 100-year erosion allowance
- Confined systems
- Erosion access allowance
- **Erosion control measures**

Stream Reaches

Reaches are lengths of channel that display similarity with respect to valley/floodplain setting, channel form, and function. The controlling influences of channel form and function should be nearly constant within the reach.

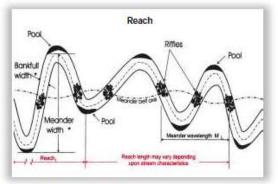
TRCA (2004) Belt Width Delineation Procedures

Howett (2017)

Challenge:

Where reach breaks are identified, and the length of reaches, can significantly change the meander belt width.

A reach is defined as a length of channel over which the channel characteristics are stable or similar.


MNR (2002) Erosion Hazard Limit

2.4.1 Sinuosity

igure 48 - Meandering

channel characteristics are stable or similar Ontario Ministry of Natural Resource

River System

Figure 49 - "Reach", a length of channel over which

hnical Guide - River and Stream Systems: Erosion Hazard Limit

Unconfined ravines, river valleys and stream corridor system tend to be predominately located within relatively flat terrain. They normally contain perennial (year round) or ephemeral (intermittent) flows which may have a tendency to constantly shift or meander (laterally and downstream) in response to the continuous changes associated with the natural influence of discharge and load. The maximum extent, or area of provincial interest that a water channel migrates is termed "meander belt allowance". The term "meander belt" is derived from ter minology used to describe meandering systems.

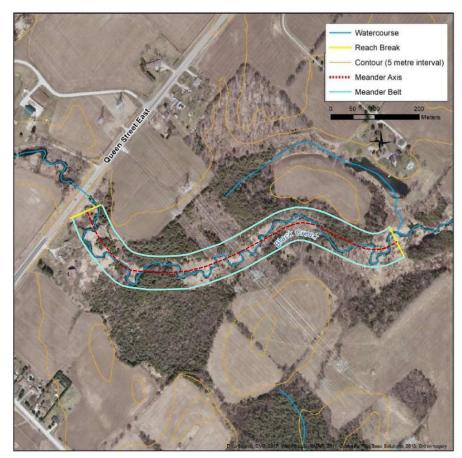
Watercourses have a natural tendency to "sinuosity" in the lower reaches where bed downcutting is reduced. "Meandering" refers to the tortuous shape of the channel in plan view. The sinuous bends develop to a size governed by the bed and bank materials, and by the bankfull discharge. Changes in the bankfull discharge can result in changes in the size of the sinuous bends. A limit to the width of the meander can be caused by the development of "chutes" (short channels formed during high flows) across the inner bank sediments. The "Sinuositi Index" (SI) is used to describe the degree of meandering and is the ratio of the channel length to the downvalley distance. The Sinuousity Index can range from less than 1.05 to more than 1.5. 1.5 is appropriate for many streams and is a measure of the "wiggliness" or "tortuosity" of a watercourse. Meandering changels have an SL of 1.5 or more and are more common to cohesive bed and bank soil materials. The typical bankfull velocity of a meandering stream is between 1 and 3 metres per second.

2.4.2 Reach

A meandering system is comprised of a series of inte nected reaches. A "reach" is defined as a length of channel over which the channel characteristics are stable or similar. The extent of a reach depends on the geometry and dynamics of the channel. It is often measured in multiples of channel width, meander wavelengths, or riffle-pool sequences. Measurements should be taken over a length sufficient to establish the stable characteristics of the channel. All geomorphological features and types of aquatic habitat should be proportionally represented in the section of the stream being assessed, and at least two of each of the major features of the section should be represented. Measurements of channel characteristic within a reach should be carried out so that the range of conditions within the reach can be specified (MNR, 1994)

Similar biological characteristics can also be measured to as sist in determining the reach. Frissell et al., 1986 suggest that habitats follow the same organization as the branching network of the stream reaches, implying that sample reaches for habitat surveys may be selected on the basis of stream segment order numbers or position in the drainage network

Meander Belts for Unconfined Reaches

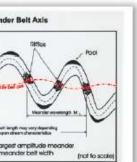

The term **meander belt allowance**, for the purposes of defining the "area of provincial interest", is essentially the maximum extent that a water channel migrates. MNR (2002) Erosion Hazard Limit

Because a watercourse is expected to move and change within the meander belt, anything situated within it could, at some time in the future, be subject to erosion by the channel. Thus, the meander belt as a tool for planning purposes is a valid approach for defining the area in which river processes occur and will likely occur in the future.

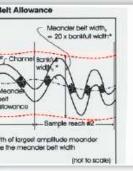
TRCA (2004) Belt Width Delineation Procedures

Challenges:

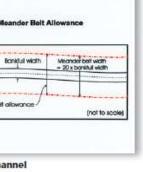
Simplified approach is relied on for complex erosion hazards or when forced on low risk reaches where concept is not appropriate.


Modified from Howett (2017)

Different Approaches from Other Jurisdictions:


Washington State (2003), Channel Migration Zones Quebec (Bill 67, 2020) Mobility Zones

Pool Bondual width to Addinder * use bonituit channel width of lar in the reach to determine the m ure 119 - Meander Belt Meander Belt * use bonituit channel width in the reach of determine sample reach of 1 * use bonituit channel width in the reach to determine Burkfull channel Meander Belt Straight Channel Meander Channel
In the reach to determine the m ure 119 - Meander Belt Meander Bel Meander Belt Meander belt width, - 20 x bankful width* - 20 x bankful width* Bankful width, Bankful width, Sample reach #1 * use bankful channel width in the reach to determine ure 120- Meander Belt Straight Channel: Me
Meander beit width, = 20 x bankful width* Meander Bankful width* Bankful width* Bankful of annei width in the reach to determine ure 120- Meander Belt Straight Channel: Meander Mid-point of channel
- 20 x bankul welt* Meander Bankul Bankul Bankul Bankul Sample reach #1 * use banklul channel with in the reach to determine ure 120- Meander Belt Straight Channel: Me Mid-poirt of channel
Md-point of channel
Meanderbelt



For those reaches where the channel appears to be straight (Figure 121), numerous factors combine to influence the size, shape and location of the meanders or the channel. For example, the "straightness" of the channel may result from the channel bed being located in a less erosive soil structure. Over time, flows within the channel bed may again begin to form meanders. When applying the meander bet allowance of 20 times the bankfull channel width for a reach that appears to be relatively straight, the meander bet should be centred on the mid-line of the channel.

Combining all of the calculated meander belt widths for each reach together along the entire length of channel will provide the overall meander belt allowance for the unconfined system.

Where municipalities and planning boards determine that 20 times the bankfull channel width of the reach is excessive or not sufficient enough in determining the meander belt allowance, mechanisms should be incorporated into the planning process providing the flexibility to undertake a study using accepted scientific, and engineering principles to determine the meander belt allowance. This flexibility may not be warranted or desired where a more precise definition of the me ander belt allowance or erosion hazard limit is not necessary, where there is sufficient area within the development lot. to site any proposed development outside of the eros ion hazand limit (i.e., meander belt allowance plus the erosion access allowance), where development pressure is low and alternative development sites exist, or where the staff, administ trative and financial resources within the municipality may preclude the ability of the municipality to support such studies. For those situations where a study is used to determine the "meander belt allowance", the study should be undertaken using "accepted engineering principles". For further recommendations on what should be addressed by these studies please refer to Chapter 4 - Field and Site Investigation.

Some studies of meander belt allowances have already been undertaken by local agencies. These allowances are generally unique to specific watersheds or regions. Where local studies have been undertaken using accepted engineering principles they may be used to determine the meander belt allowance for the area studied.

m Systems: Erosion Hazard Limit

100-Year Erosion Allowance

Confine Reaches


100-year toe erosion allowance in confined reaches (MNR, 2002; Table 3)

Unconfined Reaches

- 100-year erosion allowance is also used in TRCA (2004) belt width procedures for a factor of safety applied in addition to existing belt width
- Instead, MNR (2002) requires belt width plus erosion access allowance of 6 m

100-Year Erosion Limit

The term 100-year erosion hazard limit is also used to for detailed predictions of channel locations in 100 years based on bank erosion rates

TRCA (2015) Crossings Guideline for Valley and Stream Corridor

Challenges:

Confusion about 100-year erosion allowance terminology and definition; and

Overreliance on Table 3 with large ranges in erosion allowances and insufficient guidance for consistency

	Tabl
	of Material e Soil Structure
1.Hard Roc	k (granite) *
2.Soft Rock	(shale, limestone)
Cobbles, I	Boulders *
3.Stiff/Hard C	ohesive Soil (clays, clay
silt), Coars	e Granular (gravels) Tills
4.Soft/Firm	Cohesive Soil, loose
	sand, silt) Fill *

allowances for the materials found at the site should be applied Active Erosion is defined as: bank material is exposed directly to stream flow under normal or flood flow condition where undercutting, oversteepening, slumping of a bank or down stream sediment loading is occurring. An area may have erosion but there may not be evidence of 'active erosion' either as a result of well rooted vegetation or as a result of a condition of net sediment deposition. The area may still suffer erosion at some point in the future as a result of shifting of the channel. The toe erosion allowances presented in the right half of Table 3 are suggested for sites with this condition. See Step 3.

3: Determination of Toe Erosion Allowance

E EROSION ALLOWANCE - River Within 15 m of Slope Toe

	Evidence of Active Erosion** OR Bankfull Flow Velocity > Competent Flow Velocity***	No evidence of Active Erosion** OR Bankfull Flow Velocity <competent Flow Velocity***</competent 			
	RANGE OF SUGGESTED TOE EROSION ALLOWANCES	< 5m	ankfull Wic 5-30m	lth > 30m	
	0 - 2 m	0 m	0 m	1 m	
8	2 - 5 m	0 m	1 m	2 m	
/ 5 *	5 - 8 m	1 m	2 m	4 m	
	8 - 15 m	1-2 m	5 m	7 m	

tive soil structures occurs the greater or largest range of applicable toe erosis

'Competent Flow Velocity is the flow velocity that the bed material in the stream can support without result osion or scour. For bankfull width and bankfull flow velocity, see Section 3.1.2

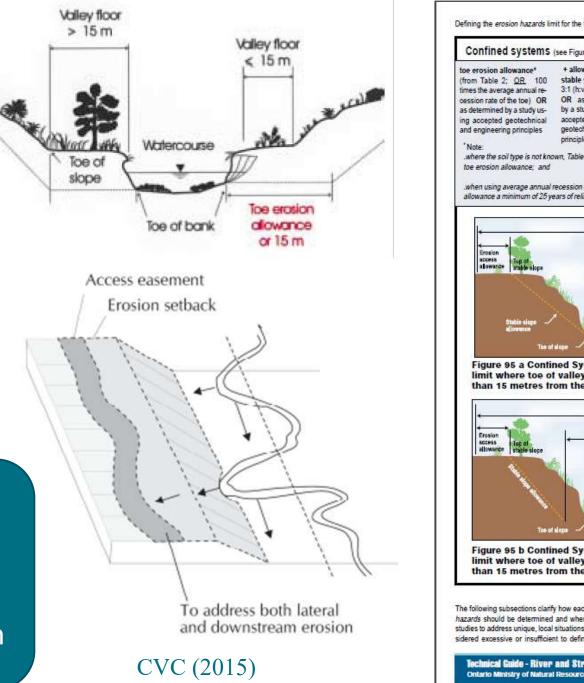
> Where there is evidence of high variability in soil composition, the soil composition is no known, and/or evidence of high erosion activity, the 15 metre toe erosion allowance should be

STEP 2: Determine whether or not there is evidence of active erosion OR if the bankful velocity is greater than the competent flow velocity.

Visible on-site evidence of active erosion may include a bare or vegetation-free river or stream bank which is directly exposed to water flows, and where undercutting, over-steepening, slumping of the bank or high downstream sediment loading is occurring. Slumping, scars, and bare stream banks that are not directly exposed to river flows are slope stability issues and should not be considered as evidence of "active erosion"

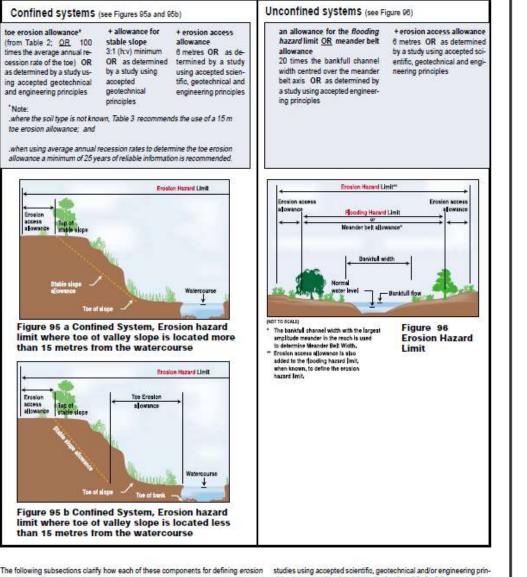
If field investigations determine that active erosion is occurring and as long as the soils at the site can be identified, it may not be necessary to determine the bankfull or competent flow velocities at the site. The Toe Erosion Allowances from Table 3 can be applied directly without any further calculations

Confined Systems


The confined river valley or stream system is one in which the physical presence of a valley corridor containing a river or stream channel is **visibly detectable** from the surrounding landscape...

The location of the river or stream channel may be located at the base or toe of the valley slope, in close proximity to the valley slope toe (less than 15 m) or removed from the valley slope toe (15 m or more).

MNR (2002) Erosion Hazard Limit


Challenges:

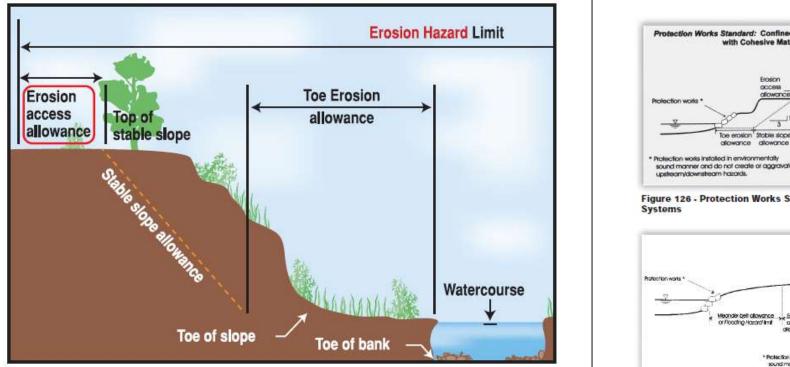
- 15-metre criterion not technical justified, needs to be scaled to channel size; and
- Insufficient guidance for consistency on how to integrate channel and slope erosion hazards in partially confined systems

Defining the erosion hazards limit for the two basic types of river and stream systems landforms should be based on the following approaches

sidered excessive or insufficient to define the area of provincial interest). Where the area studied

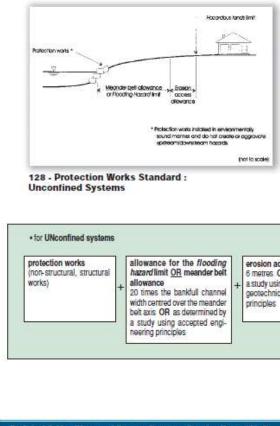
hazards should be determined and where flexibility may be provided to undertake ciples were used to determine the landward limit of the erosion hazstudies to address unique, local situations (e.g., where the approach/es) may be con-

Erosion Access Allowance and Erosion Control Measures


Erosion Access Allowance

- **Emergency access**
- Construction access
- Factor of safety

MNR (2002) Erosion Hazard Limit


Erosion Control Measures

- Erosion hazard credit?
- Life-cycle costs


Challenges:

- Erosion access allowance is not as consistent as it could be in definition, size, and application across the province;
- Life-cycle costs are discussed, but insufficient guidance for implementation, so rarely well assessed in specific terms; and
- How to deal with erosion hazard credit for erosion control measures?

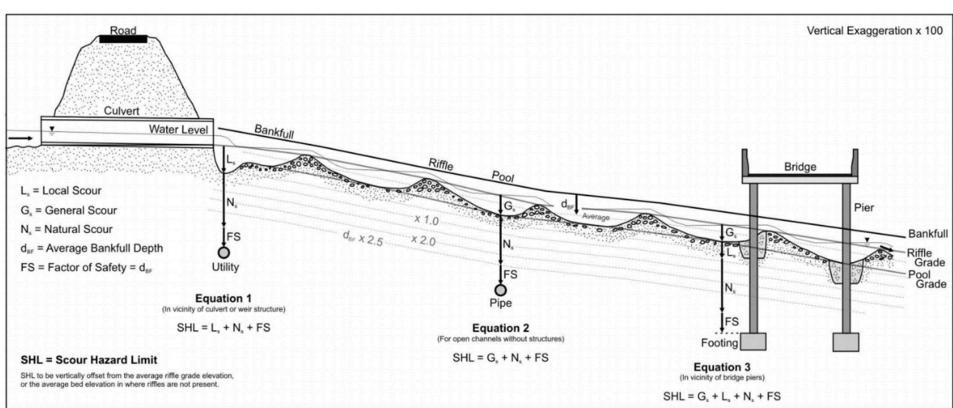
Protection Works Standard: Confined or Terrain-Dep

Figure 126 - Protection Works Standard: Confined

Figure 127, Protection Works for Contined System (example)

Where the protection works standard is deemed too excessive or insufficient to address the severity of the natural hazards impacting on a particular site, mechanisms should be incorporated into the planning process providing the flexibility to undertake a study using accepted scientific, geotechnical and engineering principles to determine the protection works standard.

Where the municipality or planning board approves the study (studies) using accepted geotechnical, scientific and/or engineering principles, where applicable and appropriate, to determine the toe erosion, meander belt, stable slope and/or erosion access allowances, the protection works standard should then consist of the protection works plus the approved allowances and applied only in the area studied.


Access to the development in times of erosion emergencies is necessary for safety. Access to the protection works is also required for maintenance and repairs.

erosion access allowance 6 metres OR as determined by a study using accepted scientific. geotechnical and engineering

echnical Guide - River and Stream Systems: Erosion Hazard Limit

Scour Hazard Analysis

CVC (2019) Scour Hazard Guidelines

Туре	Definition	
Local Scour (Ls) Localized erosion of the streambed around in-stream structures and artificial obstructions to the flow.		
General Scour (Gs)	Lowering of the channel bed that generally affects all or most of the channel cross-section.	
Natural Scour (Ns)	Degradation or lowering of the average bed elevation at the reach- scale due to natural fluvial processes of erosion and sediment transport operating over the long-term and may include the effects of watershed land use change	-

Fluvial Geomorphic Guidelines: Factsheet VI Scour Analysis | V 1.0 | Credit Valley Conservation

https://cvc.ca/wp-content/uploads//2021/06/rpt_scourfactsheet_f_111219.pdf

Credit Valley Conservation Inspired by nature

Credit Valley Conservation Fluvial Geomorphic Guidelines: Factsheet VI Scour Analysis

Prepared by: Credit Valley Conservation December 2019

Recommendations and Next STEPs

Recommendations:

Update the guidelines to address:

- 1. Specific Technical Issues
- 2. General Scientific Advancement
- 3. Guiding Principles for Policy Application

PGO Geomorphology Subcommittee Next STEPs:

Continue to engage with the Ministry (NDMNRF) as stakeholder in geohazard policies and technical guidelines for erosion hazard assessments

Welcome consultation with municipal and conservation authority stakeholders

Email: geomorphology@pgo.ca

Great Lakes – St. Lawrence River System and large inland lakes, river and stream systems and hazardous sites. An introductory guide for public health and safety policies 3.1, provincial policy statement

2001

🕅 Ontario

Technical Guide River & Stream Systems: Erosion Hazard Limit

Ontario Ministry of Natural Resources Water Resources Section 300 Water Street, 5th Floor, South Tower, P.O. Box 7000 Peterborough, Ontario K9J 8M5

PGX Thank You!

Under Our Feet and on the Horizon: A two-decade review of erosion hazard assessment in Ontario

Roger Phillips, Ph.D., P.Geo.

Thursday, October 21st, 2021

