Sustainable Technologies EVALUATION PROGRAM

Equitable Responsibility for Transformational Design: *Optimization of stormwater management within the East Holland River watershed*

STEP Webinar March 4, 2021

Ben Longstaff, LSRCA

Dustin Bambic, Paradigm Environmental

REEMA

Tracy Patterson, Freeman Associates

Problem statement

- Municipal boundary, public land-based stormwater planning & management
- After-the-fact mitigation a significant factor in stormwater planning
- End-of-pipe focus of SWM, with ad hoc approach to LID
- Growing municipal deficit

Lack of integrated, watershed scale, systemlevel cost-benefit optimization.

Municipal stormwater & wastewater deficit (1996 -2016) Source FCM

A re-tooling of SWM is needed:

SWM plans that build toward holistic, systemic planning that mimics predevelopment, watershed-scale hydrology.

Study principles

- 1. Using an **optimization methodology** for SWM planning will significantly expand the scope and depth of Stormwater Control Measures (SCMs) evaluation, **providing for more efficient strategies.**
- 2. Siting SCM on **private & public properties** (vs public properties only) will provide improved performance at **greater cost-efficiency**.
- 3. Planning and managing stormwater using a **watershed wide framework** will provide improved performance at **greater cost-efficiency** as compared with municipal-scale planning (equitable responsibility)
- 4. Phosphorus reduction strategies also have **significant co-benefits for peak flow control**
- 5. Climate change and additional urbanization will exacerbate challenges and further support need for systems-based approach

Study area and participants

East Holland River

- Peri-urban
- Growth and intensification
- Municipal Boundary ≠ Watershed Boundary
- Five municipalities

Technical Advisory Committee

- East Holland River municipalities
- MECP
- TRCA and CVC (STEP Partners)
- Project team

• Flood mitigation

Process-based Optimization Framework

LSPC Input **Current State Model** Climate / Rain / Snow Land Use / Soils **East Holland** Slope / Imperviousness Impoundments Point sources /diversions · And much more Output Continuous simulation time series of flow & contaminants for each subwatershed and reach outlet

Outputs to Support Policy Decisions

COST OPTIMIZATION ACROSS MILLIONS OF POTENTIAL STRATEGIES

Simulate current conditions:

- Phosphorus
- Stream flow

Build future state model:

→Select stormwater control measures

- Decentralized (LID) & Centralized (e.g. hybrid ponds)
- \rightarrow Performance of selected stormwater controls (e.g. P removal)
- \rightarrow Cost of selected Stormwater control (capital, O&M)

Optimization simulations:

- \rightarrow Watershed scale
- \rightarrow Public vs public and private lands
- \rightarrow Watershed vs Jurisdictional

Simulate current conditions:

- Phosphorus
- Stream flow

Build future state model:

 \rightarrow Select stormwater control measures

• Decentralized (LID) & Centralized (e.g. hybrid

 \rightarrow Performance of selected stormwater controls (e.g. P removal)

 \rightarrow Cost of selected Stormwater control (capital, O&M)

Optimization simulations:

 \rightarrow Watershed scale

- \rightarrow Public vs public and private lands
- \rightarrow Watershed vs Jurisdictional

8

Simulate current conditions:

- Phosphorus
- Stream flow

Build future state model:

→Select stormwater control measures

- Decentralized (LID) & Centralized (e.g. hybrid ponds)
- \rightarrow Performance of selected stormwater controls (e.g. P removal)
- \rightarrow Cost of selected Stormwater control (capital, O&M)

Optimization simulations:

 \rightarrow Watershed scale

- ightarrow Public vs public and private lands
- \rightarrow Watershed vs Jurisdictional

14

Precipitation — Modeled Streamflow — Observed: E Holland River - Holland Landing

Simulate current conditions:

- Phosphorus
- Stream flow

Build future state model:

 \rightarrow Select stormwater control measures

- Decentralized (LID) & Centralized (e.g. hybrid ponds)
- \rightarrow Performance of selected stormwater controls (e.g. P removal)

 \rightarrow Cost of selected Stormwater control (capital, O&M)

Optimization simulations:

 \rightarrow Watershed scale

- \rightarrow Public vs public and private lands
- \rightarrow Watershed vs Jurisdictional

11

Optimization

Simulate current conditions:

- Phosphorus
- Stream flow

Build future st
Select stormwater control measu
Decentralized (LID) & Centra
→ Performance of selected stormw
→ Cost of selected Stormwater cor

 \rightarrow Public vs public and private lar

 \rightarrow Watershed vs Jurisdictional

 \rightarrow Watershed scale

10 Streamflow (cms) 2013 0/2017 100% 90% 80% 70% 60% 50% 40% 30% Best Solutions 20% All Solutions 10% 0% **\$25** \$75 **\$0** \$50 \$100 \$125 \$150 \$175 \$200 Total Implementation Cost (\$ Million)

14 12

14

28

42

56

12

Typical designs from STEP Life Cycle Costing Tool V2 for most BMPs

Cost Functions for Representative BMPs

(NOTE: Includes OM costs plus annualized capital costs)

Opportunities for BMP Footprints

- Flagged aggregated parcels where BMPs could be sited
- Based on screening criteria: land use type, available area, distance to stream, depth to groundwater, etc.
- Private and public bins are basis of private vs public scenarios

Areas Managed by BMPs

- Distributed BMPs: the drainage areas are rooftops, roads and parking lots (straight-forward)
- Centralized BMPs: larger upstream areas (nested areas that required delineation routines)

Principle #1

An optimization methodology will result in more efficient stormwater management strategies

Public and Private Opportunities Considered (Costs are annualized over 30-years)

Cost Optimized Implementation Strategy

,000 -	Reduction in Annual Phosphorus Loading	40.25 %
	Total Cost	7 M \$CAD
	Total Capacity	190,323.12 m3
- 000	Rooftop Capture	6,022.68 m3
000 -	Parking Lot Capture	47,082.13 m3
000 -	Regional Green Streets	22,594.56 m3
	Offline Centralized (Small, Private)	10,383.90 m3
000 -	Offline Centralized (Small, Public)	18,367.01 m3
.000 -	Future Growth	28,580,28 m3
000 -	Offline Centralized (Private)	6,122,59 m3
000	Offline Centralized (Public)	0.00 m3
000	Inline Centralized (Private)	40,705.91 m3
000 -	Inline Centralized (Public)	10,464.05 m3
,000 -		
000		

- Inline centralized BMPs most cost effective
- Parking lots and green streets provide huge opportunity for reduction
- Reductions above 45% more costly
- All reduction achieved by managing runoff, inline facilities do not treat baseflow
- Source control not considered

25

Reduction (%)

20

35

30

2.0M

0.0

50

(Costs are annualized over 30-years)

45

Cost Optimized Implementation Strategy

The 40% slice is a basinwide phosphorus reduction strategy to achieve LSPPP targets

Overall costs to achieve 40% Phosphorus reduction at East Holland Landing Station \$6.5 million/yr*

* Includes capital, operational and maintenance expenses annualized over Region Conservation Authority

Cost Optimized Implementation Strategy

Overall costs to achieve 40% Phosphorus reduction at East Holland Landing Station \$6.5 million/yr*

* Includes capital, operational and maintenance expenses annualized over 30 time period

Cost Optimized Implementation Strategy

EgR4TD Jurisdictions

Structural BMP Capacity (cubic meters)

GIS VIEWER

BREAK FOR QUESTIONS

Principle #2

Siting stormwater control measures on private & public properties (vs public properties only) will provide improved performance at greater cost-efficiency.

Public Land Only: Optimized Implementation Strategy

- Available opportunity insufficient to achieve 40% reduction
- Same 14.8% reduction costs only \$2M per year when private opps are available.

10

Reduction (%)

(Costs are annualized over 30-years)

0.0

Public vs public & private lands

Private & Public land:

• 40% phosphorus reduction achieved at \$6.5 million/year

Public lands only

 15% maximum phosphorus reduction at \$13 million/year

Public – Private Partnership examples:

- <u>Wetland projects on private farmland</u>, (Norfolk County, Alus, AgCan, OMAFRA, Weston Corp)
- <u>District energy partnership</u> (City of Markham, Mattamy Homes Canada and Enwave Energy)

N

N

Principle #3

Planning and managing stormwater using a basinwide framework will provide improved performance at greater costefficiency as compared with municipalscale planning.

Jurisdiction vs Basinwide Results

- Watershed-wide collaboration leads to a 28% cost savings and 30% reduction in SCM capacity.
- Intermunicipal collaboration provides for more efficient distributed SCM (e.g. parking lots), economies of scale and increased capacity (e.g. centralized hybrid ponds).

- Central York Fire Services (Aurora and Newmarket).
- Animal Services (Aurora, Georgina and Newmarket).
- Holland Marsh Drainage System Joint municipal Services Board
- York Purchasing Cooperative (all municipalities in Region).

BREAK FOR QUESTIONS

Principle #3

Phosphorus reduction strategies also have significant co-benefits for peak flow control

Principle #4

Climate change and additional urbanization will exacerbate challenges and further support need for systems-based approach

Flood Mitigation Analysis

- Simulated design storms for 5, 10, 25, 50 and 100 year storms
- HEC-RAS used to simulate water levels with each peak flow
- Optimization curves generated for each site to establish the maximum potential *peak flow* and *water level* mitigation from BMPs

Optimization and design storm curves were used to estimate the flooding mitigation that would be achieved by 'phosphorus' BMPs and under climate change weather conditions

30

Potential Flood Reduction Benefits by Phosphorus SCMs

- 'Water quality' SCM can substantially reduce peak *flow rates*
- However, peak *water levels*, according to HEC-RAS, are not always sensitive to peak flow reductions.

Watarbady	Flood-prone	Description		Peak	Flow			Elevation			
vvalerbody	Area ID	Description	10 yr	25 yr	50 yr	100 yr	10 yr	25 yr	50 yr	100 yr	
Tannery Creek	Area 2	South of Tyler Street at Temperance St	17.21%	16.55%	14.65%	10.12%	7.83%	4.23%	3.14%	0.54%	Water level
Tannery Creek	Area 5	Aurora Heights Dr/Machell Park	20.06%	19.04%	16.62%	11.45%	1.93%	2.67%	7.79%	2.72%	less than peak
Bogart Creek	Area 8	Gorham St to Srigley St	26.12%	24.44%	21.59%	<u>15.68%</u> ►	2.35%	2.99%	3.51%	3.41%	due to
Western Creek	Area 10	Ontario St, East of Lorne Ave	16.74%	13.95%	13.85%	11.49%	6.84%	2.71%	1.50%	2.50%	constrictions in network.
Tannery Creek	Area 13	Harriman Driveways	23.79%	21.43%	18.41%	12.56%	8.46%	5.92%	3.73%	3.34%	
Tannery Creek	Area 14	Kennedy St West Culert	17.78%	17.62%	15.78%	10.99%	10.65%	9.70%	10.43%	14.46%	

31

Example Flood Optimization: 100-year storm at Area 8 (Gorham St to Srigley St, Bogart Creek)

Peak flow: -16.54%

Stream depth: -3.60%

Conveyance Constriction Reduces Benefit of Peak Flow Reduction

33

Example Cross Sections in HEC-RAS Area 8 (Newmarket, Bogart Ck)

eaend

Simulating Benefit of SCM under Future Climate based on Flood Design Storms

- Future rainfall IDF curves under climate change extracted:
 - RCP 8.5: worst case
 - RCP 4.5: carbon emissions curbed
- The future storms were analyzed to forecast how much 'resiliency' the 40% TP reduction BMPs will build into the stormwater system

						2021-2050								
	RCP 4.5													
Site		10 yr			25 yr		100 yr							
	Non-Mitigated % Peak Flow Change	Mitigated % Peak Flow Change	Percent of Climate Change Mitgated	Non-Mitigated % Peak Flow Change	Mitigated % Peak Flow Change	Percent of Climate Change Mitgated	Non-Mitigated % Peak Flow Change	Percent of Climate Change Mitgated						
Area 2	+12.0%	-5.2%	100.0%	+46.9%	+30.4%	35.2%	+44.3%	+34.2%	22.8					
Area 5	+20.4%	0.3%	98.5%	+33.3%	+14.2%	57.3%	+109.2%	+97.3%	10.9					
Area 8	+11.4%	-11.4%	100.0%	+38.6%	+15.8%	59.2%	+90.7%	+75.8%	16.4					
Area 10	+10.3%	-6.5%	100.0%	+31.5%	+15.3%	51.5%	+63.6%	+53.6%	15.8					
Area 13	+11.4%	-11.7%	100.0%	+52.3%	+31.9%	39.1%	+55.5%	+44.5%	19.8					
Area 14	+10.7%	-7.1%	100.0%	+32.0%	+14.3%	55.2%	+84.6%	+73.6%	13.0					
						RCP 8.5								
		10 yr			25 yr		100 yr							
Site	Non-Mitigated % Peak Flow Change	Mitigated % Peak Flow Change	Percent of Climate Change Mitgated	Non-Mitigated % Peak Flow Change	Mitigated % Peak Flow Change	Percent of Climate Change Mitgated	Non-Mitigated % Peak Flow Change	Mitigated % Peak Flow Change	Percent of Climate Change Mitgated					
Area 2	+18.0%	+0.8%	95.8%	+52.8%	+36.3%	31.3%	+33.2%	+23.0%	30.5					
Area 5	+26.5%	+6.5%	75.7%	+38.1%	+19.1%	50.0%	+67.8%	+55.9%	17.6					
Area 8	+15.9%	-7.0%	100.0%	+44.1%	+21.2%	51.8%	+58.5%	+43.7%	25.4					
Area 10	+14.3%	-2.4%	100.0%	+35.7%	+19.5%	45.5%	+42.3%	+32.2%	23.8					
Area 13	+17.5%	-5.6%	100.0%	+59.1%	+38.6%	34.6%	+40.0%	+28.1%	29.7					
Area 14	+14.5%	-3.2%	100.0%	+36.5%	+18.8%	48.3%	+54.2%	+43.3%	20.3					

Climate Change Mitigation by SCMs (2021-2050)

Qualified analysis of co-benefits

- Over 200 peer-reviewed studies informed the rating based on 'capacity' or 'potential' of a given SCM to provide a specific benefit.
- Rating scale: 0.0 to 1.0 where '0.0' is very low and '1.0' is very high.
- A weighted qualitative evaluation of co-benefits comparing siting SCMs only on available public property (current practice) versus public + private property.

Rating*	Co-benefit Capacity or Potential
0	Very low potential or capacity to provide the co-benefit
1⁄4	Limited or mediocre potential or capacity to provide the co-benefit
1/2	Medium or reasonable potential or capacity to provide the co-benefit
3/4	High potential or capacity to provide the co-benefit
1	Very high potential to provide the co-benefit

Qualitative rating based on the capacity of a SCM to provide co-benefits.

		CO-BENEFITS													
STORMWATER CONTROL MEASURE	Biodiversity	Habitat for species	Supports pollinators	Groundwater recharge & base flow	Erosion control	CO ₂ sequestration & storage	Air quality Improvement	Drinking source water quality	Reduced Heat Stress	Energy savings	Improved aesthetics	Increased recreational opportunities	Increased Property Value	Reduced demand on infrastructure	AVERAGE RATING
Decentralized SCA	٨s														
Bioretention	1⁄2	1⁄2	1⁄2	3/4	3/4	3⁄4	1⁄2	3/4	1⁄2	1⁄2	3/4	1/2	1/2	1⁄2	0.59
Infiltration trench / chamber	0	0	0	1	1⁄2	1/4	1/4	1⁄2	1⁄4	1/4	1⁄4	0	0	1/4	0.25
Enhanced boulevard tree cell	1⁄2	1⁄2	1⁄2	3/4	1⁄2	3/4	3/4	1⁄2	3⁄4	1⁄2	3/4	1/4	1⁄2	1⁄2	0.57
Centralized SCMs															
Hybrid wetland/pond	3⁄4	3⁄4	3⁄4	1	1	3⁄4	1⁄2	1	3⁄4	1⁄2	1	3⁄4	3⁄4	1	0.80

36

Study outcomes and findings

- **Demonstrated the multiple benefits** of undertaking watershed scale cost-optimization modeling.
- Identified the most cost-effective opportunities to achieve 40% phosphorus reductions in support of the LSPOP and the LSPP phosphorus reduction strategy's target.
- **Demonstrated how the tool can be used to assess peak flow/ flood reduction** associated with P reduction control measures, the associated costs and damage reduction.
- **Developed a methodology** that can be further refined and applied to other watersheds within the Lake Simcoe basin and beyond.
- **Prepared critical datasets**, such as stormwater management lifecycle costs that can be readily applied to future studies.
- Ensured modeling was completed in **opensource (non-proprietary) software** facilitating flexibility in future application.

Implementation: Intermunicipal collaboration

Rationale:

 Reduced costs to individual municipalities, improved level of services and functions, expanded capacity, leveraging of resources and capabilities.

Policy & regulation:

- There are no provincial or municipal policy or regulatory barriers to intermunicipal collaboration for SWM.
- Multiple provinces, including Ontario, have specific policies and programmes to encourage and support intermunicipal collaboration on capital projects, operations and services.

Governance & administration:

 Multiple models in use for intermunicipal collaboration including, informal collaboration between two or more municipalities through to joint powers of agreement with formalized governance frameworks.

Implementation: Private property hosting of SCMs

Rationale:

 Meet targets, reduced costs, greater ability to target problem areas, long-term local economic stimulus and market development, increased property values, neighbourhood improvement, and greater ability to meet other environmental priorities (tree planting, biodiversity, UHI and air quality, etc.)

Policy & regulation:

- There are **no provincial or municipal policy or regulatory barriers** to private property hosting of centralized or distributed SCMs
- Multiple provinces, including Ontario, have specific policies and programmes to encourage and support public-private partnerships.

Governance & administration:

 Multiple mechanisms including joint ventures, municipally administered market-based incentives, third-party management/delivery, combination of municipal-third-party management.

Next steps

- Establish a **senior-level working group**, possibly an extension of the existing study Technical Advisory Committee (TAC), to develop a work plan and strategy for the implementation of system-wide SWM and public-private projects.
- Meet with senior municipal staff, council, industry/sector representatives and First Nations to discuss findings and explore opportunities for support and collaboration.
- **Develop guidance and training materials** and tools to support area municipalities in the use of optimization analysis for SWM planning.
- Evaluate the application of **system-wide SWM principles Lake Simcoe-wide**
- Evaluate **integrating the use of non-structural SCMs and natural assets** as integral parts of the SWM system

Acknowledgements

TECHNICAL ADVISORY COMMITTEE MEMBERS

Municipalities

Conservation Authorities

- York Region
- Town of Newmarket
- Town of Aurora
- Town of East Gwillimbury
- Town of Whitchurch-Stouffville

Funding Partners

- Federation of Canadian Municipalities (FCM)
- Natural Resources Canada (NRCAN)
- National Disaster Mitigation Program (NDMP)
- York Region
- Lake Simcoe Conservation Foundation
- Toronto Region Conservation Authority (TRCA)
- Credit Valley Conservation (CVC)
- Town of Newmarket

- Toronto Region
- Credit Valley
- Lake Simcoe

Provincial Government Consultants

- Ministry of Environment, Conservation & Parks
- Freeman Associates Ltd.
- Paradigm Environmental
- Fortin Economics
- Barry Hassler

QUESTIONS AND DISCUSSION

Contact information

Ben Longstaff

General Manager, Integrated Watershed Management Lake Simcoe Region Conservation Authority b.longstaff@LSRCA.on.ca | www.LSRCA.on.ca

Dustin Bambic

Director, Paradigm Environmental dustin.bambic@paradigmh2o.com| www.paradigmh2o.com

Tracy Patterson

Principal, Freeman Associates Ltd Email. tracy@thewaterstrategy.com www.thewaterstrategy.com

Thank you

