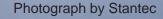
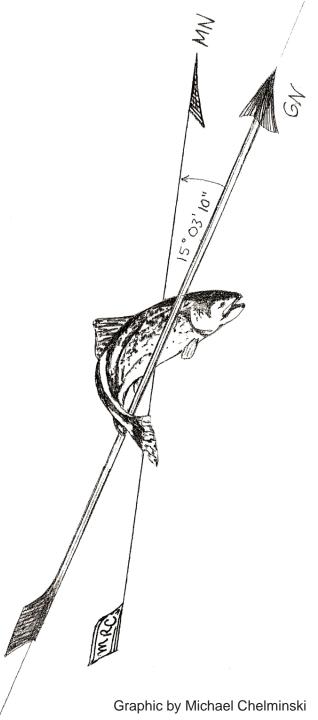
Stream Restoration Symposium 2019

Lessons Learned from Stream Restoration in Other Jurisdictions

Thank you to our sponsors


Dam Removal and Stream Restoration

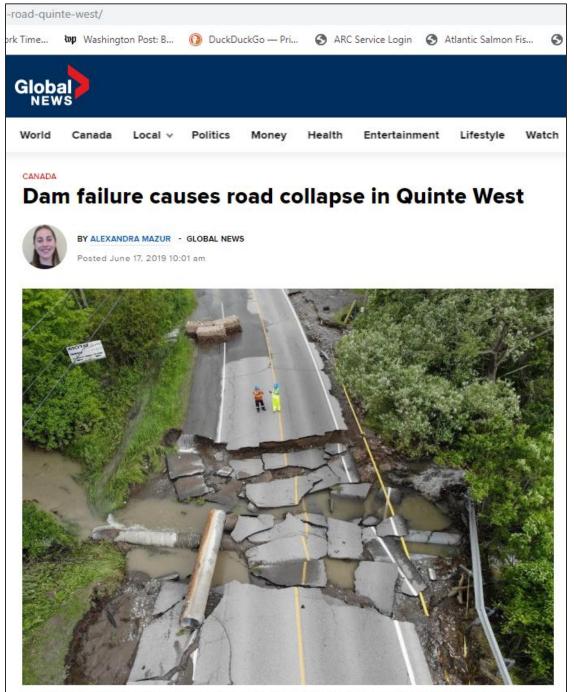
Lessons Learned from Stream Restoration in Other Jurisdictions


November 13, 2019

Michael Chelminski, P.E., Principal Stantec Consulting Services Inc.

Agenda

- ✓ Safety Moment
- 1.0 Introduction
- 2.0 Reasons for Dam Removal
- 3.0 Dams in the Riverscape
- 4.0 Dam Removal Process
- 5.0 Alteration of Fluvial Processes
- 6.0 Dam Removal & Stream Restoration
- 7.0 Questions & Responses



<mark>Safety</mark> Moment

Source: Global News https://globalnews.ca/news/5398506/damfailure-road-quinte-west/

June 2019 Dam Failure in Quinte West, Ontario

- Damage to Roads
- Exposure of Gas Main
- Vehicle Swept into River

 A dam failure in Quinte West destroyed a large portion of Trenton-Frankford Road in Glen Miller, Ont. City of Quinte West

Share the River, Share the Road, Share the Load.

Section 1.0: Introduction

Photograph by Jimmy Powell, Jones River Watershed Association

Ontario Guidance on Small Dam Removal

Existing Guidance is Available for Small Dam Removal in Ontario: https://www.ontario.ca/page/small-dam-removal

- *"Why Should You Consider Removing Your Dam"*
 - 1) Safety
 - 2) Economic
 - 3) Environmental
 - *4)* To Improve Water Quality
 - 5) Societal"

The next item in the list is: "Approvals Required"

The Challenge:

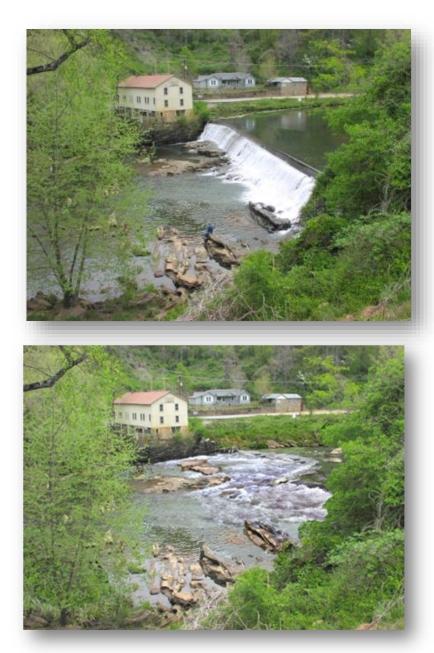
Regulatory processes for dam removal can be daunting...

A Good Resource for Small Dam Removal

Massachusetts Division of Ecological Restoration

- 10 years as a State Division
- Predecessor entities ("Riverways Program", "Wetlands Restoration Program") as state "programs"
- Success based on persistence and collaboration
- Relevant Materials
 - ✓ Annual Reports <u>https://www.mass.gov/lists/ders-publications#annual-reports-</u>
 - ✓ Ebb & Flow Newsletter <u>https://www.mass.gov/lists/ders-publications#der's-newsletter---ebb&flow-</u>
 - Restoration and Economy Reports <u>https://www.mass.gov/lists/ders-publications#restoration-and-economy-reports-</u>

What did the fish say when it went upriver?


Section 2.0 Reasons for Dam Removal

Photograph by Stantec.

Section 2.0: Reasons for Dam Removal

General Drivers for Dam Removal

- Public Safety & Dam Safety
- Fish Passage
- Aquatic Habitat Restoration
- Restoration of Fluvial Processes
- Boating Access
- Water Quality
- Opportunities:
 - Restoration
 - Mitigation
 - Compensation

Tuckasegee River, Dillsboro Dam: Photograph & Photo-Simulation for Stantec.

Section 2.0: Reasons for Dam Removal

Dam Removal Pros and Cons

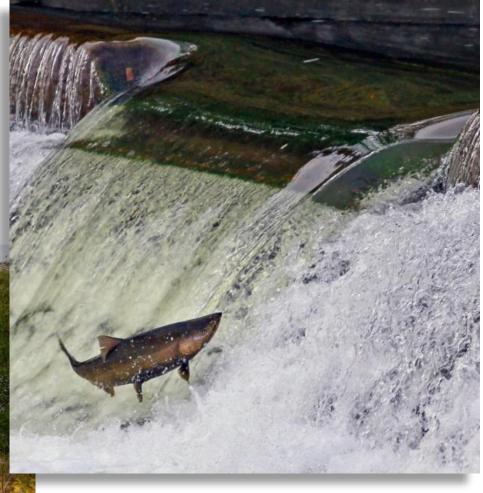
Pros

- Eliminate Dam Safety Concerns
- Eliminate Dam Maintenance & Operations
- Eliminate Dam Costs
- Eliminate Safety Hazards
- Eliminate Dam Impacts to Natural Resources

Cons

- Eliminate Benefit(s) of Dam
- Limited Dam Removal Experience
- Applicable Regulations are Evolving
- Dam Removal Impacts to Natural Resources

Photograph by Stantec

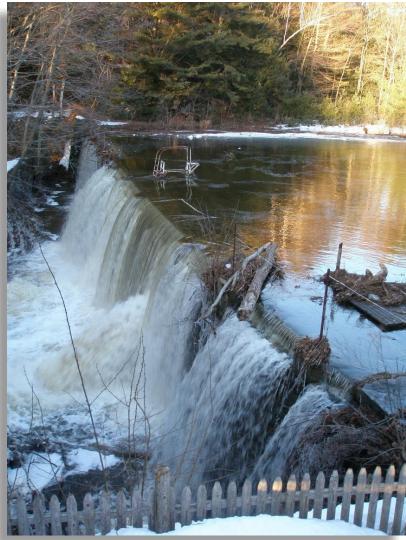

Section 2.0: Reasons for Dam Removal

Example: Humber River Weirs, Ontario

Opportunities & Constraints

- Maintenance Costs
- Upstream Fish Passage (provide and prevent)
- Sediment
- Public Perceptions

Count the Dams on Your Rivers


Section 3: Dams in the Riverscape

Photograph by Stantec

Section 3.0: Dams in the Riverscape

Dams and Small Dams

- What is the definition of a "Small Dam"?
 - <u>Reference applicable</u> <u>dam safety regulations!</u>
 - Reasonable Definition:
 - "Hydraulic Height Less than 25 ft."
- Alternative Definition:
 - "A dam that no longer serves its intended purpose and is not financially viable."

Section 3.0: Dams in the Riverscape

Restoration of Sediment Transport Amethyst Brook Restoration Project • Dam Removed in December 2012

Photographs by Stantec.

May 10, 2013

June 6, 2013

Section 3.0: Dams in the Riverscape

Dams in the Riverscape

- Ecological Impacts
 - Cumulative Impacts on Connectivity
- Infrastructure Impacts
 - Cumulative Impacts to Adjacent Infrastructure
 - Emergency Response
- Small Dam Removal Objective
 - Eliminate or Reduce Risk
 - Improve Resiliency

Photograph by Stantec.

2017 American Society of Civil Engineers Infrastructure Report Card Section 3.0: Dams in the Riverscape 2017 "D" is for "Dam" Image and INFRASTRUCTURE REPORTCARD Content Credit: ASCE • "D+" in 2012 INFRASTRUCTURE **ASCE** Report ilting in grade increases. However, the 2017 Report Card's cumulative Card. GPA of D+ reflects the significant backlog of needs facing our nation's infrastructure writ large. Underperforming, aging infrastructure remains a irag on the national economy, and costs every American family \$3,400 a year D \checkmark The trend is in the C+ wrong direction. 8 B D in the second se ٦· Ŵ C+ a D D DAMS EVEES **D**+ INFRASTRUCTURE REPORT CARD

Planning is good!

Section 4.0: Small Dam Removal Project Process

Photograph by Stantec

Targeting Dams for Removal

- Targets based on <u>expected beneficial and</u> <u>adverse impacts</u> to natural resources.
- Targets based on relative cost of dam removal versus ongoing maintenance costs and/ or reconstruction.

The Top 2 List of Stakeholder Comments:

- 1. "The River Will Go Away!"
- 2. "It Will Look Like Low Tide Forever!"

Table 1: Small Dam Removal Hydrology

	Flow (m^3/s)					
Scenario	Summer	Bankfull	10-Year	50-Year	100- Year	500- Year
Dam (existing conditions)*	1.1	6.2	10.2	14.5	18.7	21.8
Dam Removal (perception)	0	"what?"	20	30	39	45
Dam Removal (reality)	~1	~6	~10	~15	~19	~22

***Note:** Existing values obtained from analysis of real-time hydrometric data station conveniently located near the dam.

Typical Small Dam Removal Process

Typical Process

- 1. Planning
- 2. Reconnaissance
- 3. Feasibility Study*
- 4. Design & Permitting(NOT "Design and then Permitting")
- 5. Construction

*Feasibility studies must be properly scoped to acknowledge that primary issues are usually associated with costs and social factors.

Technical issues usually are addressed as part of design.

Fish Passage Restoration Feasibility Study Montsweag Brook Wiscasset and Woolwich, Maine

January 2010

Prepared for

Montsweag Restoration Project The Chewonki Foundation 485 Chewonki Neck Road Wiscasset, Maine 04578-4822

Prepared by

Stantec Consulting 30 Park Drive Topsham, Maine 04086

Permitting Process(es)

Background

- Natural Resource Permitting Requirements are Focused on Development-Based Activities.
- Regulatory Agencies are Stakeholders.
- Design/Engineering may encounter unfamiliar conditions.

Approach

- Top-down approach (e.g., permitting follows design) may not be efficient or effective.
- ✓ Integration of design and permitting.
- ✓ Early and frequent communication.

Scoping for <u>Design and Permitting</u>

- Scoping for dam removal can be difficult.
- <u>Regulatory requirements and drivers are not well adapted</u>
 <u>for dam removal.</u>
- Design may be broad-brushed and not focused and result in high associated cost.
- Dam removal projects require work in protected resources.
- Uncertainty and varying opinions regarding beneficial and adverse impacts.

✓ Scoping benefits from a multi-disciplinary process.

✓ Engage and Inform Stakeholders.

Planning and Reconnaissance

Planning for Dam Removal:

- Plan for Success
- Project Selection
- Stakeholder Engagement

Reconnaissance Study Elements

- ½-Day Site Visit
- Project Dam
- Stakeholder Concerns
- Resource Issues
- Sediment Management
- Conceptual Design
- Conceptual Permitting Approach
- Preliminary Costs
- ✓ Facilitate Stakeholder Engagement

Site Reconnaissance, Preliminary Evaluation, and Opinion of Probable Cost for Dam Removal

Foundry Pond Dam Hingham, Massachusetts

June 2012

Foundry Pond Dam Spillway, June 1, 2012

Prepared for Massachusetts Division of Ecological Restoration Department of Fish and Game 251 Causeway Street, Suite 400 Boston, MA 02114

Prepared by Michael R. Chelminski, P.E. Massachusetts License No. 47167 Stantec Consulting Services Inc.

30 Park Drive Topsham, ME 04086

Summary of Planning Process for Small Dam Removal

1) Planning:

• Develop & Implement a Plan

2) Reconnaissance:

- Site visit
- Fatal flaws (e.g., infrastructure)
- Brief report
- \$5K \$10K

3) Feasibility

- Site Data Collection
- Sediment, Hydrology, Wetlands
- Preliminary Design
- \$50K \$100K

4) Design & Permitting

- Engage Permitting Agencies
- Design, Permitting
- Reengage Permitting Agencies
- \$200K \$500K

First Principals: Example Project

Study Approach

- Understanding Impacts
- Technical Studies
- Project Development
- Impacts to Resource

Lessons Learned

- Accommodate Constraints
- Focus on Primary Element(s)
- Impact Assessment
- Integration of Design and Permitting

Example: Little River Dam Removal, Maine

Basis of Design

• "Blow and Go"

Dam Removal Construction

• September 21, 2009

First Principals: Lessons Learned

Accommodate Constraints & Uncertainty

- 1) Dam removal design and permitting including beneficial reuse of demolition debris on site.
- 2) "Stream restoration" was limited to:
 - a) Placement of boulder debris in channel; and
 - b) Limited grading of streambanks.
- 3) "Difficult" elements of project were accommodated:
 - a) Pump house retained; and
 - b) In-water impacts minimized by not attempting to reconstruct the channel.

Example: Little River Dam Removal, Maine

Result: Continuity Restored of Fluvial Processes

Water Management

Photographs by Stantec.

How to Manage Water?

- Work in the Dry (\$\$\$)
- Work in the Wet
- ✓ Work in the Damp
- Consider time-value of impacts

October 26, 2012

April 14, 2013

November 9, 2012

December 6, 2012

May 10, 2013

June 6, 2013

Bartlett Rod Shop Company Dam

Section 5.0: Alteration of Fluvial Processes

Photograph by Stantec

Alteration of Fluvial Processes

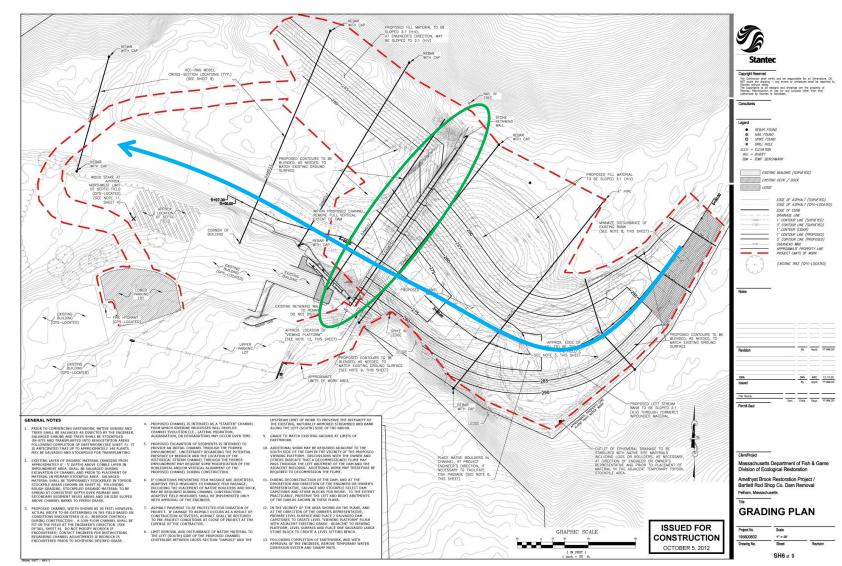
- 1) 7 Meter Height Dam in Poor Condition
- 2) Alteration of Physical Habitat
- 3) Minimal Alternative Hydrology
- 4) Alteration of Fluvial Processes
 - Sediment Transport
 - Morphology
- 5) Equilibrium?

ter

Photographs by Stantec

Alteration of Fluvial Processes

• Dam Safety Concerns are Warranted?


Photographs by Stantec

Dam Removal Results in Alteration of Fluvial Processes

Design by Stantec

Construction Approach

- 1) ~4,000 M³ of Sediment Repositioned Onsite
 - River Maintains Access to Sediment

Photograph by Stantec

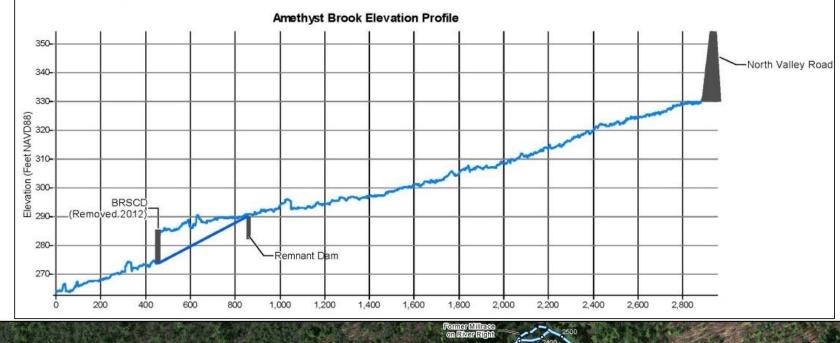
Movie Time Construction Is A Mix of Natural and Anthropogenic

Processes....

Still Image Movie by Massachusetts Division of Ecological Restoration

Channel Evolution

Photographs by Stantec



July 7, 2013

May 22, 2014

Dam!

Images by Stantec

Success Builds a Foundation

Timber Dam May 28, 2013

> Timber Dam Removal January, 2016

- ➤ 2.5-M High Dam
- Construction Access
- ➤ Funding

DEERE

- ✓ Streamlined Permitting Process
- ✓ Construction "In the Wet"

Photographs by Stantec

Low Tide?

Section 6.0: Dam Removal & Stream Restoration

Photograph by Stantec

When and Why

Factors that May Drive Active Restoration

- Project Goals & Objectives
- Sediment Management
- Infrastructure
- Aesthetics
- Available Funding
- ✓ Drivers are Project Specific

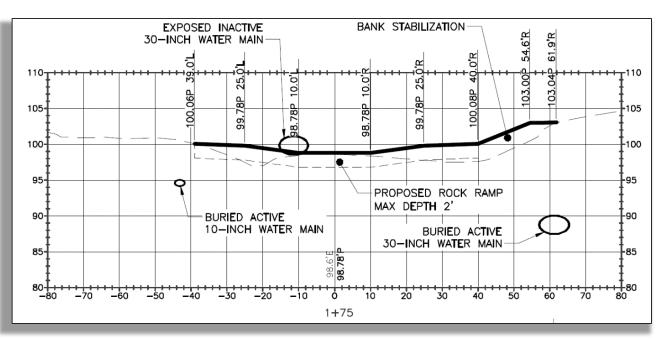
Photograph by Stantec

"Low Tide" Doesn't Last Forever

Montsweag Brook Dam Removal – No Active Restoration

June 1, 2010: Drawdown

July 13, 2011: Nine months post-removal

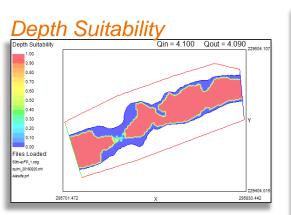


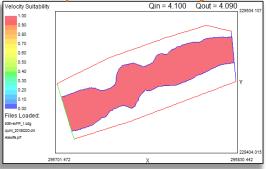
Photographs by Stantec

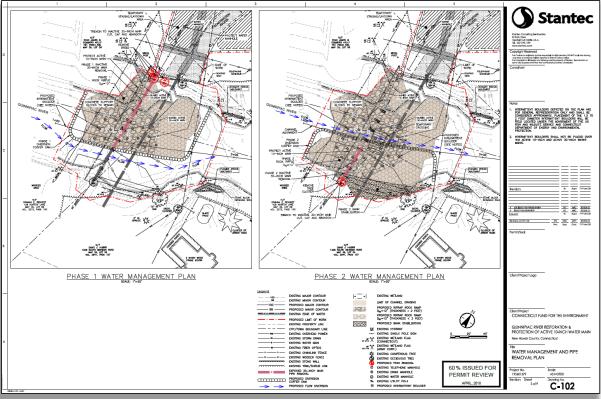
Example of Dam-Infrastructure Coupling

Image and photograph by Stantec

- Small Dam Removed Approximately 500 ft Downstream in 2016
 - Active and abandoned water mains (buried and exposed)
 - Abandoned 30-inch Water Main is a Barrier to Upstream Fish Passage




Water Main Protection Project Example


- Design and Permitting
 - Natural Resource Protection Rules & Regulations
 - Maintenance of Infrastructure Services
 - Engineering Design

Flow Speed Suitability

Images by Stantec

Water Main Protection Project Example

- 70 m channel reach
- Construction (March – April, 2019)

Section 7.0: Questions & Responses

Questions & Responses

Stream Restoration Symposium 2019

Lessons Learned from Stream Restoration in Other Jurisdictions

Thank you to our sponsors

