Stream Restoration Symposium 2019

Lessons Learned from Stream Restoration in Other Jurisdictions

Thank you to our sponsors

Gold Sponsors

NC State University Stream Restoration Program

Established: 1998

Mission: Advance the Science & Practice of Stream Restoration through

- Teaching
- Research
- Networking

www.ncsu.edu/srp

Objectives:

- Educate designers, contractors, landowners, and resource managers about effective restoration
- Educate students who will serve society in government, academia, and business
- 3. Develop and test effective technologies for restoration design, construction, and evaluation

Team of Professionals

 A team of faculty, staff, and students working to improve water quality and aquatic ecology through research, demonstration projects, and education.

Partnerships

- Many Disciplines
- Other Universities
- Agencies
- Private Sector
- Non-Profit Organizations

Program Components

- Academic courses (campus and on-line)
- Professional development workshops & tours
- Technical Resources
- Southeast Regional Conference (biennial)
- Networking (e-mail list, web site)
- Demonstration Projects
- Research (Graduate and Undergraduate)

Academic Courses

- BAE 584 Introduction to Fluvial Geomorphology (on-line)
- AES 443 Environmental Restoration Implementation
- BAE 580 Introduction to Land and Water Engineering (on-line)
- BAE 582 Risk and Failure Assessment of Stream Restoration Structures (on-line)
- BAE 579 Stream Restoration (Not currently offered)

Web Site: www.ncsu.edu/srp

\times	Stream Restoration Program De 🗙 🕂		—	٥	×
:	← → C	Q	☆ 🗡) i
arks	🔢 Apps ★ Bookmarks ★ Bookmarks		📙 Otł	her bool	okma <mark>rk</mark> s
*	✓ NC State Home RESOURCES ≡ search ncsu.edu Q				
	NC STATE Department of Biological and Agricultural UNIVERSITY Engineering				
	About Academics Research Extension People News Contacts & Location Search Q				
	Program Areas Extension Publications Extension Team Workshops and Conferences 4-H Electric Youth Program				

Extension / Stream Restoration Program

Stream Restoration Program

Team | Technical Resources | Ecostream Conference | Training | Contact Us | Mailing List |

Stream restoration is the re-establishment of the general structure, function and self-sustaining behavior of the stream system that existed prior to disturbance. It is a holistic process that requires an understanding of all physical and biological components of the stream system and its watershed. Restoration includes a broad range of measures, including the removal of the watershed disturbances that are causing stream instability; installation of structures and planting of vegetation to protect streambanks and provide habitat; and the reshaping or replacement of unstable stream reaches into appropriately designed functional streams and associated floodplains.

The techniques and methodologies are evolving rapidly. New design aids are being developed that will improve design efficiency and confidence. We encourage stream restoration professionals to carefully document their experiences – including project successes and failures – so that the restoration community can better understand the appropriate techniques for various conditions.

🛚 🖬 O 🛱 🔁 🔚 🏦 🕿 🥭 🥥 💷 💹 丛 墨 📑 🔯

Training Courses

- Stream Assessment
- Stream Restoration
- Advanced Restoration Design
- AutoCAD for Stream Restoration
- Restoration Implementation & Evaluation
- Construction Certification for Contractors
- Vegetation Establishment & Monitoring
- Aquatic Macroinvertebrate Taxonomy
- Streambank Repair
- Hydraulic Design for Stream Restoration

Training Courses: www.ncsu.edu/srp

Stream Restoration Program Training						
Workshop Location Date						
RC 101 – Stream Morphology Assessment	Raleigh, NC	March 12-14, 2019				
	Asheville, NC	October 9-11, 2019				
RC 201 – Natural Channel Design Principles	Asheville, NC	May 22-24, 2019				
RC 302 – HEC-RAS for Stream Restoration	Raleigh, NC	July 24-26, 2019				
RC 303 – Multi-Dimensional Modeling for Stream Restoration	Raleigh, NC	August 27-29, 2019				
RC 401 – Construction Practices for Stream Restoration	Kernersville, NC	March 26, 2019				
	Kernersville, NC	March 27, 2019				
Streambank Repair Workshops	Hendersonville, NC	March 13, 2019				
	Asheville, NC	March 14, 2019				
	Fayetteville, NC	April 30, 2019				
Backyard Stream, Erosion Control, & Raingarden Clinics						
Surface Water Identification Training and Certification	Raleigh, NC	May 14-17, 2019				
(SWITC)	Raleigh, NC	October 15-18, 2019				

River Course Workshops

- 3-day modules on Assessment, Restoration, Advanced Design, & Implementation/Evaluation
- "Hands-on" training for 30-35 professionals per session
- More than 5500 participants since 2000

Construction (Certification)

- Partner with NC Ecosystem Enhancement Program (Mitigation Services)
- 3-day "hands-on" training for 40 contractors & construction supervisors
- Examination leads to certification

Technical Resources

- Fact Sheets
- Design Handbook
- Regional Curves for Hydraulic Geometry

River (ourse

River Course is a fact sheet series developed to provide information and technologies related to the use of natural channel design in restoring impaired streams.

Dominant, Effective, and Bankfull Discharge

Restoring streams to a stable form through natural channel design requires detailed information about surface water hydrology and the interactions between rainfall and overland flow or runoff. The channel-forming or dominant dis-

charge is the most common method for sizing channel dimension if the stream restoration requires re-shaping the channel. Channel dimension is the cross sectional shape of the channel, including channel width, depth, and cross sectional area. Dominant discharge is a theoretical discharge that if constantly maintained in an alluvial stream over a long period of time will produce the same channel geometry that is produced by the long-term hydrograph. Effective discharge

many years. Effective discharge is the peak of a curve obtained by multiplying the

flood frequency curve and the sediment discharge rating curve (Figure 1). Bankfull discharge is the discharge that fills a stable alluvial channel to the elevation of the active floodplain. This discharge is Distributed in furtherance morphologically significant because it identifies the point where the active channel stops and the

floodplain begins. In other words, it represents the breakpoint between the processes of channel formation and floodplain formation. Since bankfull discharge is the only discharge that can be identified in the field using physical indicators, it is the one most commonly used in natural channel design. Most river engineers and

of the Acts of Congress of May 8 and June 30, 1914.

Employment and program

opportunities are offered to

race, color, national origin, sex, age, or disability, North

Carolina State University,

North Carolina A&T State

of Agriculture, and local

governments cooperating.

University, U.S. Department

all people regardless of

Fact Sheet Number 3

Finding Bankfull Stage in North **Carolina Streams**

restoration institute

Effective discharge

Discharge

is defined as the discharge that Figure 1. Effective discharge determination from sediment rating and transports the largest percentage of flow duration curves. The peak of curve C marks the discharge that the sediment load over a period of is most effective in transporting sediment. (Wolman and Miller, 1960)

> hydrologists work under the assumption that dominant, effective, and bankfull discharges are approximately equal. This assumption has not been proven true in the Southeast; however, the differences will probably not significantly affect a natural channel design.

Field Indicators of the Bankfull Stage

The height of water, or stage, during bankfull flow is the point at which flooding occurs on the floodplain. This may or may not be the top of the streambank. If the stream has downcut due to changes in the watershed or streamside vegetation, the floodplain stage indicator may be a small bench or scour line on the streambank. The top of the bank, which was formerly the floodplain, is called a terrace in this case. A stream with a terrace near the top of the banks is an incised, or entrenched, stream. If the stream is not entrenched, then

College of Agriculture & Life Sciences • NC State University School of Agriculture • NC A&T State University

Hydraulic Geometry Regional Curves

Regional Conference - EcoStream

Purpose:

Exchange ideas and experiences

Promote research and advancement

Conference Includes:

- Learning and Networking Opportunities
- Presentations & Posters
- Workshops
- Corporate Exhibits
- Field Tours

13 Conferences with Attendance of 150-500

- Elkin Asheville
- Boone
- Raleigh
- Wilmington
- Winston-Salem
- Charlotte

- Asheville
- Raleigh
- Wilmington
- Charlotte
- Asheville • Asheville

401 Participants from 20 States & 2 Countries

Attendee Profile

Demonstration Projects

- Various watershed conditions
- Teaching & long-term evaluation

Rocky Branch, NC State University

Urban stream restoration & stormwater management (NC CWMTF, NC DENR 319, NC DOT, FEMA)

Design, Construction, Monitoring: 2001-2012

Stone Mountain State Park, Wilkes Co

Rural trout stream restoration (NC EEP, NC Div Parks & Rec)

Design, Construction, Monitoring: 1999-2007

Rendezvous Mountain State Forest

Rural high-gradient trout stream & wetland restoration (NC DFR, NC CWMTF) Design, Construction, Monitoring: 2005-2009

North River

Rural Coastal Tidal Creek Restoration (NC CWMTF, NC EEP, Coastal Federation), 6,000-acre stream & wetland restoration

Design, Construction, Monitoring: 2008-2015

UT to Perry Creek, Millbrook Exchange Park

Urban Incised Channel – Test Innovative Grade Controls to Intercept Sediment Transport

Design, Construction, Monitoring: 2017-2020

Research Projects

- Restoration Design
 - Hydraulic geometry relationships
 - Channel Morphology
 - Sediment transport
 - Innovative Design Techniques
- Restoration Effectiveness
 - Biological indicators
 - Eco-geomorphological Performance
 - Water quality impacts
 - Structure performance
 - Culvert impacts on fish passage

Hydraulic Geometry and Channel Morphology

Geomorphology from Total Station Surveys

Hydraulic Geometry Relationships

Dimension, Pattern, & Profile related to Discharge, Slope, & Bed Material

Clinton, 2001

Sediment Transport

Monitoring and Modeling Sandbed Channel Development: Nick Lindow, PhD

Cove Creek Stream Restoration, Craven County

Cove Creek Monitoring

Cove Creek Dynamic Model

FLUIDIZED BED

Channel Bedform Characterization

Morphology survey of two streams, Joyce Kilmer Wilderness Area, Western N.C.: Jason Zink, PhD 2012.

From longitudinal profile:

- length: pool, riffle
- slope: pool, riffle, reach
- height: step
- spacing: pool

Longitudinal Profile: Bedform Morphology

Percent of Stream Length Occupied by Steps, Riffles, Pools

Pools: >50% length for all streams with slope 0.07 ft/ft Riffles/Steps: both exist across entire range of slopes Most common sequence: step-pool-riffle

Longitudinal Profile: Bedform Morphology

Percent of Elevation Change by Steps, Riffles, Pools

Channel Adjustment

Use Post-restoration monitoring of stream restoration projects: Jonathan Page, PhD Candidate (2020)

XS 3 2006 Looking downstream

XS 3 2009 Looking downstream

NC Division of Mitigation Services Database of all Piedmont Restored Streams for Mitigation

		River Basin: Cape Fear
Level	Count	Site Name Boar Creek (Phillips Site) XS ID NS - 6, Pool (Reach 1 Upstream) Drainage Area (sq mi): 4.08 Date: 5/15/2018 Field Crew: Perkinson, Keith
Site	122	Station Elevation SUMMARY DATA 0.0 97.0 Bankfull Elevation: 96.8 3.9 96.7 Bankfull Cross-Sectional Area: 51.1 7.5 95.9 Bankfull Width: 27.7 9.5 95.7 Flood Prone Vidfh: - 1.3.8 95.1 Max Depth at Bankfull: 3.4
Reach	312	15.7 93.8 Mean Depth at Bankfull: 1.8 18.8 93.4 W/D Ratio: - 20.4 93.4 Entrenchment Ratio: - 22.1 93.3 Entrenchment Ratio: 1.00 23.7 93.8 Internet Ratio: 1.00 24.9 94.7 Stream Type C
XS	1,150 (Riffle = 651, Pool = 499)	27.8 95.44 29.1 96.11 31.4 97.09 34.2 97.13 98
MY	3,944 (Riffle = 2,200, Pool = 1,744)	96 Hereit and the second seco
D ₅₀	754	92 0 10 20 30 40 Station (feet)

Absolute Adjustment in Riffle Cross Sections

Summary of Absolute Riffle Geometry Adjustments

Absolute Adjustment in Riffle Cross Sections

Summary of Absolute Riffle Geometry Adjustments

Water Quality Impacts

Purlear Creek restoration evaluation by Justin Spangler, MS 2007

Monitoring (14 sites)

Flow rate Total Suspended Solids (TSS) Total Phosphorus (TP) Orthophosphate P (O-PO₄-P) Total Nitrogen (TN) Total Ammonium Nitrogen (NH₃-N) Total Kjeldahl Nitrogen (TKN) Organic Nitrogen (Org N) Nitrate + Nitrite (NO_3 -N) Total Coliform Escherichia Coli Chloride (Cl) Temperature Dissolved Oxygen (DO) pН

TSS Load

Total Inflow Load:	
86 Mg	
Total Outflow Load	-
15 Mg	

TP Load

Total Inflow Load:
1021 kg
Total Outflow Load:
825 kg

TN Load

Total Inflow Load:
4660 kg
Total Outflow Load:
2965 kg

Structure Performance

Rock Cross Vane Function & Performance: Paige Puckett, PhD, 2007

- 3 Factor, 3 Level Study Arm Angle (deg), Arm Slope (ft/ft), Drop (ft/bkfd)
- Response variable
 Flow Contraction = V_{center}/V_{outer}

Findings:

- Drop has the greatest impact on flow contraction.
- As drop decreases, slope effects are more predominant than angle effects.
- At higher drops, angle effects are more predominant than slope effects.

Failure Modes and Assessment

- 16 projects on 11 streams were assessed
- 6 failure indicators were observed:

arms washed out header washed out head cut bank erosion at vane bank erosion downstream of vane insufficient scour pool development

Structure Rapid Assessment Tool

Crossvane #			Banks	primary	secondary
Date/Time			bank erosion	direct contact of flow with	arms do not tie into banks
Notes			at vane	banks	arms washed out
					exposed banks
					poor spacing of boulders
				flow directed at banks	improper alignment
score each in	dicator from 0-5 based on gu	idebook			placed in a bend
Durability	primary	secondary		piping	insufficient backfill
arm washout	drag + lift, moment to resist	arms do not tie into banks			poor spacing of boulders
	movement < moment to	improper alignment		side cutting	arms do not tie into banks
	produce movement	insufficient backfill			arms too short
	undercutting (leads to tipping)	placed in a bend			arms washed out
		poor spacing of boulders			header too high
		undersized boulders			improper alignment
		arms too steep			placed in a bend
		drop too high			poor spacing of boulders
		improper alignment			undersized cross vane
		insufficient backfill		undercutting	arms too steep
		no footers			drop too high
		placed in a bend			improper alignment
		undersized cross vane			insufficient backfill
header	drag + lift, moment to resist movement < moment to produce movement	header too high			no footers
washout		insufficient backfill			placed in a bend
		poor spacing of boulders			undersized cross vane
		undersized boulders	downstream	direct contact of flow with	arms too short
			hank areaian	hanka	

Results

INDICATOR	VANES	% OF VANES	PATH OCCURRENCES
F1. ARM WASHOUT	20	16.7	31
F2. SILL WASHOUT	4	3.3	4
F3. HEADCUT	60	50.0	161
F4. BANK EROSION	77	64.2	192
F5. DOWNSTREAM BANKS	39	32.5	65
F6. INSUFFICIENT POOL	52	43.3	69

55 vanes showed indications of side-cutting from at least one of:

- •Improper alignment
- •Backed into a bend
- Poor boulder spacing
- •Header installed too high

• Undersized vane

Culvert Impacts on Fish Passage

Fish Swimming Performance Measurement: Angela Gardner, MS, 2006

Critical Velocities Related to Body Length

Stream Restoration Assessment

Determine the ecological functional uplift achieved by stream restoration efforts. : Barbara Doll, PhD, 2013

Sampled Macroinvertebrates as restored streams and applied four rapid assessment tools at reference, degraded, and restored streams to:

- Determine what tools could be used to evaluate functional uplift
- Compare restored streams to degraded and high quality reference channels
- Identify factors (e.g. watershed, landscape and design) that influence the condition and function of restored streams

Statistical Regression Model (w/variable elimination)

Positiv	Negative			
Basin Slope	1.66	CN	-1.42	
ER	1.02	K	-0.46	
D ₅₀	0.81	[W/D]	-0.42	
S _{vallev}	0.74	T _c	-0.05	
W _{bkf}	0.74			

Larger streams in steeper valleys with coarse substrate and undeveloped watersheds have more EPT taxa

Wider floodplain widths indicate higher EPT taxa numbers.

Total Number of Dominant EPT Taxa

Total Number of Dominant EPT Taxa

Stream functions pyramid framework

Evaluating the Stream Quantification Tool (SQT)

Evaluate the SQT for measuring ecological functional uplift for stream restoration efforts: Sara Donatich, MS, 2019 (defense November 26)

	Functional Category	Measurement Method	Functional Category	Measurement Method	
	Hydrologic	Curve Number		Total Nitrogen	
		No. of Concentrated Flow Points	Physico- chemical	Total Phosphorus	
		Soil Compaction		Leaf Litter Processing Rate OR	
	Undroutio	Bank Height Ratio		Percent Shredders	
	Hydraulic	Entrenchment Ratio		Fecal Coliform	
	Geomorphic	LWD Index		Summer Daily Max. Temp.	
		Large Woody Debris Piece Count		NC Biotic Index for	
		Erosion Rate	Biological	Macroinvertebrates	
		Dominant BEHI/NBS		EPT Index	
		Percent Streambank Erosion		NC Index of Biotic Integrity for	
		Canopy Coverage		Fish	
		Buffer Width			
		Basal Area	-		
		Stem Density	Restoration	n Watershed Catchment	
		Pool Spacing Ratio	Potential	Assessment	
		Pool Depth Ratio			
		Percent Riffle	Total	SOT Variables - 28	
		Aggradation Ratio	ιυιαι	<u>JVI Valianies – 20</u>	
		Sinuosity			
		Size Class Pebble Count Analyzer			

Performance Standards are intended to represent high-quality "reference" streams

Overall Functional Score)

Pool-to-Pool Spacing Ratio (C and E streams)

■ P-P Spacing Ratio

Evaluating Innovative Practices

Mud Creek, Md. (http://www.bayjournal.com/article/researchers_examining_effectiveness_of_stream_restoration)

Millstone Creek: Test RSC in agricultural setting

UT-Millstone Nutrient Load (kg/ha/yr)

Peer-Reviewed Publications

Doll, B.A., Jennings, G.; Spooner, J.; Penrose, D.; Usset, J.; Blackwell, J.; Fernandez, M. **2016**. Can Rapid Assessments Predict the Biotic Condition of Restored Streams? *Water* 8:143.

Doll, B.A.; Jennings, G.; Spooner, J.; Penrose, D.; Usset, J.; Blackwell, J.; Fernandez, M. **2016**. Identifying Watershed, Landscape, and Engineering Design Factors that Influence the Biotic Condition of Restored Streams. *Water* 8:151.

Doll, B.A.; Jennings, G.D.; Spooner, J.; Penrose, D.L.; Usset, J.L. **2015**. Evaluating the eco-geomorphological condition of restored streams using visual assessment and macroinvertebrate metrics. *Journal of the American Water Resources Association*. 51:68–83.

Zink, J. M., and G. D. Jennings. **2014**. Channel Roughness in North Carolina Mountain Streams. *Journal of the American Water Resources Association*. DOI: 10.1111/jawr.12180

McMillan, S. K., A. K. Tuttle, G. D. Jennings, and A. Gardner. **2014**. Influence of Restoration Age and Riparian Vegetation on Reach-Scale Nutrient Retention in Restored Urban Streams. *Journal of the American Water Resources Association*. DOI: 10.1111/jawr.12205

Tuttle, A. K., S. K. McMillan, A. Gardner, and G. D. Jennings. **2014**. Channel complexity and nitrate concentrations drive denitrification rates in urban restored and unrestored streams. *Ecological Engineering*. sciencedirect.com/science/article/pii/S0925857414004777

Tillinghast, E. D., W. F. Hunt, G. D. Jennings, and P. D'Arconte. **2012**. Increasing stream geomorphic stability using stormwater control measures in a densely urbanized watershed. *Journal of Hydrologic Engineering* 17(12):1381-1388.

Zink, J. M., G. D. Jennings, and G. A. Price. **2012**. Morphology characteristics of Southern Appalachian wilderness streams. *Journal of the American Water Resources Association*. 48(4):762-773.

Tillinghast, E. D., W. F. Hunt, and G. D. Jennings. 2011. Stormwater control measure (SCM) design standards to limit stream erosion for Piedmont North Carolina. *Journal of Hydrology* 411(3-4):185-196.

Tullos, D. D., D. L. Penrose, G. D. Jennings, and W. G. Cope. **2009**. Analysis of functional traits in reconfigured channels: implications for the bioassessment and disturbance of river restoration. *Journal of the North American Benthological Society*. 28(1):80-92.

Tullos, D. D., D. L. Penrose, and G. D. Jennings. 2006. Development and application of a bioindicator for benthic habitat enhancement in the North Carolina Piedmont. *Ecological Engineering* 27(2006)228-241.

Future Work

- Continue teaching & training of students & professionals
- Long-term evaluation studies of restoration technologies & management practices
- Develop new design tools to increase engineering confidence in morphology based design
- Evaluate flood mitigation and environmental benefits of large-scale implementation of stream restoration

Stream Restoration Symposium 2019

Lessons Learned from Stream Restoration in Other Jurisdictions

Thank you to our sponsors

Gold Sponsors

