GENERAL DESCRIPTION

Permeable pavement, an alternative to traditional impervious pavement, allows stormwater to drain horizontally through a permeable pavement system. For example, the parking spaces of a parking lot or road can be permeable pavement areas while the parking strips are asphalt pavement.

SITE CONSIDERATIONS

Wellhead Protection

Permeable pavement should not be used in the areas with a water supply for the treatment water before 1980. (City of Victoria, 2008)

Site Topography

Permeable pavement is suitable for areas that slope at least 1% and no greater than 5%.

Water Table

The use of permeable pavement stone reservoir should be at least 1.0 metre below the water table or top of bedrock elevation.

Soil

When located in native soils with an infiltration rate of less than 15 m/hr (0.0036 ft/sec) or (20 in/hr) require a perforated pipe underdrain. Native soil and infiltration rate at the proposed location and depth should be confirmed through measurement of hydraulic conductivity under field saturation conditions.

Drainage Area & Runoff Volume

The impervious area should not exceed 2.5 times the area of permeable pavement which receives runoff.

Setback from Buildings

Permeable pavement is not recommended for the locations of building foundations. If the pavement does not drain away from the building, a minimum setback of 6 (5) metres downgradient from the building should be provided.

Pollution Hot Spot Runoff

Permeable pavement is not recommended in areas that experience high levels of pollution or that are prone to Leachate contamination, runoff from highly polluted areas.

OPERATION AND MAINTENANCE

Annual inspections of permeable pavement should be conducted in the spring to ensure continued infiltration performance. Permeable pavement may have a 2-year life expectancy if the surface is maintained with a permeable pavement cleaner.

QUALITY ASSURANCE

Material Specifications for Permanent Pavement

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>700 ksi with 28 day compressive strength of 2,000 psi.</td>
</tr>
<tr>
<td>Asphalt</td>
<td>0.15 to 0.20-in. diameter with a minimum of 10% voids and 0.5% penetration for asphalt.</td>
</tr>
</tbody>
</table>

GENERAL SPECIFICATIONS

Stone Reservoir

- ALL aggregates should meet the following criteria:
 - Maximum wash loss of 25%
 - Minimum durability index of 25
 - Maximum abrasion of 10% for 100 revolutions and maximum for 50 revolutions

Stone Base

- The granular base material should be crushed 0.075 mm (20 mesh) or smaller stone with void space ratio of 0.4

Geotextile

- Geotextile should conform to Ontario Provincial Standard Specification (OPSS) 1860 for Class II geotextile fabric.
- Should be woven monofilament or non-woven needle punched fabric. Woven slit film and non-woven heat bonded fabrics conform to ASTM D6788 and D4861 for geotextile.
- Primary considerations are:
 - Synthetic monofilament opening size (KOS) for non-woven fabrics or percent open area (POA) for woven fabrics. To maintain light soil erosion and filter out sand into the embankment.
 - Maximum loadings to be exerted on the fabric (i.e., weight, vacuum, and punch strength) should be determined.
 - Load bearing strength of the geotextile and its expected amount of stress.
 - Water flow rate and percentage of the overlying aggregate.

Permeable Pavement Other Applications

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous Concrete</td>
<td>500-700 ksi with an air voids percentage to have the best freeze-thaw durability without any freeze-thaw cracking.</td>
</tr>
<tr>
<td>Porous Asphalt</td>
<td>Open-graded asphalt with a minimum of 10% voids and 0.5% penetration for asphalt.</td>
</tr>
</tbody>
</table>

Pavement Pavers

- Permeable pavers should conform to manufacturer specifications.

Concrete Base

- Concrete edge restraints should be supported on a minimum base of 20 cm (1 foot) for concrete edge restraints.

MONITORING WELLS

A standpipe from the underdrain to the pavement surface for monitoring and maintenance of the underdrain.

BMP

- Permeable pavement with no underdrain.

ABILITY TO MEET SWN OBJECTIVES

<table>
<thead>
<tr>
<th>BMP</th>
<th>Water Balance</th>
<th>Water Quality</th>
<th>Stream Channel Erosion Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeable pavement with undrained base</td>
<td>Yes</td>
<td>Yes, 5% for water quality storage requirement</td>
<td>Yes</td>
</tr>
<tr>
<td>Permeable pavement with undrained base</td>
<td>Moderate - Based on native soil infiltration and storage beneath</td>
<td>Yes</td>
<td>Based on available storage volume and soil infiltration rate</td>
</tr>
<tr>
<td>Permeable pavement with undrained base</td>
<td>Low - 3% volume reduction occurs through evaporation</td>
<td>Moderate - Limited filtering and settling of aesthetically</td>
<td>Based on available soil volume and soil infiltration rate</td>
</tr>
</tbody>
</table>

SITE PLANNING AND DESIGN

PLANNING ASSUMPTIONS

- Conventional rainfall and soil type.

PLANNING AND DESIGN FACT SHEET

<table>
<thead>
<tr>
<th>Source</th>
<th>Site Conditions</th>
<th>Site Description</th>
<th>Vegetation</th>
<th>Planting & Paving</th>
<th>Construction & Development</th>
<th>Maintenance & Monitoring</th>
<th>Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Victoria</td>
<td>Low Impact Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

The University of New Hampshire Stormwater Center has developed a Stormwater Planning and Design Guide. For further details, see the section on the Victoria Gazette.